[5] G. Walker, L. Weatherley, Separation Science and Technology 35 (2000) 1329.
[6] S.H. Lin, M.L. Chen, Water research 31 (1997) 868.
[7] J. Naumczyk, L. Szpyrkowicz, F. Zilio-Grandi, Water Science and Technology 34 (1996) 17.
[8] S. Andleeb, N. Atiq, M.I. Ali, R. Razi-ul-Hussnain, M. Shafique, B. Ahmad, P.B. Ghumro, M. Hussain, A. Hameed, S. Ahmad, Int. J. Agric. Biol 12 (2010) 256.
[9] H.S. Erkan, N.B. Turan, G.O. Engin, Fouling control in MBR in a sustainable perspective, Elsevier. 2020, pp. 21.
[10] J. Merchuk, A. Contreras, F. Garcia, E. Molina, Chemical Engineering Science 53 (1998) 709.
[11] F. Yang, A. Bick, S. Shandalov, A. Brenner, G. Oron, Journal of Membrane Science 334 (2009) 83.
[12] R. Liu, X. Huang, C. Wang, L. Chen, Y. Qian, Process Biochemistry 36 (2000) 249.
[13] A. Sofia, W. Ng, S. Ong, Desalination 160 (2004) 67.
[14] F. Yang, A. Bick, S. Shandalov, G. Oron, Water science and technology 54 (2006) 155.
[15] A. Eaton, ΣΧΟΛΗ, ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ (2005).
[16] T. Li, R. Bai, J. Liu, Journal of biotechnology 135 (2008) 52.
[17] O. Lorwy, N. Rosenbrough, A. Farr, T. Randall, J. biol. Chem 193 (1951) 265.
[18] M. Dubois, K.A. Gilles, J.K. Hamilton, P.t. Rebers, F. Smith, Analytical chemistry 28 (1956) 350.
[19] F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, F. Yang, Water research 43 (2009) 1489.
[20] P. Bérubé, Sustainability Science and Engineering 2 (2010) 255.
[21] S. Judd, Trends in biotechnology 26 (2008) 109.
[22] F. Meng, H. Zhang, Y. Li, X. Zhang, F. Yang, Journal of Membrane Science 262 (2005) 107.
[23] Y. Fan, G. Li, L. Wu, W. Yang, C. Dong, H. Xu, W. Fan, Process Biochemistry 41 (2006) 1364.
[24] B.A. Poursat, R.J. van Spanning, P. de Voogt, J.R. Parsons, Critical Reviews in Environmental Science and Technology 49 (2019) 2220.
[25] F. Yang, Y. Wang, A. Bick, J. Gilron, A. Brenner, L. Gillerman, M. Herzberg, G. Oron, Desalination 284 (2012) 261.
[26] Q. Meng, F. Yang, L. Liu, F. Meng, Journal of Environmental Sciences 20 (2008) 933.
[27] D. Yaseen, M. Scholz, International journal of environmental science and technology 16 (2019) 1193.
[28] T. Panswad, W. Luangdilok, Water Research 34 (2000) 4177.
[29] H. Lin, M. Zhang, F. Wang, F. Meng, B.-Q. Liao, H. Hong, J. Chen, W. Gao, Journal of Membrane science 460 (2014) 110.
[30] S. Rosenberger, C. Laabs, B. Lesjean, R. Gnirss, G. Amy, M. Jekel, J.-C. Schrotter, Water research 40 (2006) 710.
[31] P. Le-Clech, V. Chen, T.A. Fane, Journal of membrane science 284 (2006) 17.
[32] C. Albasi, M. Hernandez Rojas, S. Schetrite, R. Van Kaam, Desalination 179 (2005) 95.
[33] N. Yigit, I. Harman, G. Civelekoglu, H. Koseoglu, N. Cicek, M. Kitis, Desalination 231 (2008) 124.
[5] G. Walker, L. Weatherley, Separation Science and Technology 35 (2000) 1329.
[6] S.H. Lin, M.L. Chen, Water research 31 (1997) 868.
[7] J. Naumczyk, L. Szpyrkowicz, F. Zilio-Grandi, Water Science and Technology 34 (1996) 17.
[8] S. Andleeb, N. Atiq, M.I. Ali, R. Razi-ul-Hussnain, M. Shafique, B. Ahmad, P.B. Ghumro, M. Hussain, A. Hameed, S. Ahmad, Int. J. Agric. Biol 12 (2010) 256.
[9] H.S. Erkan, N.B. Turan, G.O. Engin, Fouling control in MBR in a sustainable perspective, Elsevier. 2020, pp. 21.
[10] J. Merchuk, A. Contreras, F. Garcia, E. Molina, Chemical Engineering Science 53 (1998) 709.
[11] F. Yang, A. Bick, S. Shandalov, A. Brenner, G. Oron, Journal of Membrane Science 334 (2009) 83.
[12] R. Liu, X. Huang, C. Wang, L. Chen, Y. Qian, Process Biochemistry 36 (2000) 249.
[13] A. Sofia, W. Ng, S. Ong, Desalination 160 (2004) 67.
[14] F. Yang, A. Bick, S. Shandalov, G. Oron, Water science and technology 54 (2006) 155.
[15] A. Eaton, ΣΧΟΛΗ, ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ (2005).
[16] T. Li, R. Bai, J. Liu, Journal of biotechnology 135 (2008) 52.
[17] O. Lorwy, N. Rosenbrough, A. Farr, T. Randall, J. biol. Chem 193 (1951) 265.
[18] M. Dubois, K.A. Gilles, J.K. Hamilton, P.t. Rebers, F. Smith, Analytical chemistry 28 (1956) 350.
[19] F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, F. Yang, Water research 43 (2009) 1489.
[20] P. Bérubé, Sustainability Science and Engineering 2 (2010) 255.
[21] S. Judd, Trends in biotechnology 26 (2008) 109.
[22] F. Meng, H. Zhang, Y. Li, X. Zhang, F. Yang, Journal of Membrane Science 262 (2005) 107.
[23] Y. Fan, G. Li, L. Wu, W. Yang, C. Dong, H. Xu, W. Fan, Process Biochemistry 41 (2006) 1364.
[24] B.A. Poursat, R.J. van Spanning, P. de Voogt, J.R. Parsons, Critical Reviews in Environmental Science and Technology 49 (2019) 2220.
[25] F. Yang, Y. Wang, A. Bick, J. Gilron, A. Brenner, L. Gillerman, M. Herzberg, G. Oron, Desalination 284 (2012) 261.
[26] Q. Meng, F. Yang, L. Liu, F. Meng, Journal of Environmental Sciences 20 (2008) 933.
[27] D. Yaseen, M. Scholz, International journal of environmental science and technology 16 (2019) 1193.
[28] T. Panswad, W. Luangdilok, Water Research 34 (2000) 4177.
[29] H. Lin, M. Zhang, F. Wang, F. Meng, B.-Q. Liao, H. Hong, J. Chen, W. Gao, Journal of Membrane science 460 (2014) 110.
[30] S. Rosenberger, C. Laabs, B. Lesjean, R. Gnirss, G. Amy, M. Jekel, J.-C. Schrotter, Water research 40 (2006) 710.
[31] P. Le-Clech, V. Chen, T.A. Fane, Journal of membrane science 284 (2006) 17.
[32] C. Albasi, M. Hernandez Rojas, S. Schetrite, R. Van Kaam, Desalination 179 (2005) 95.
[33] N. Yigit, I. Harman, G. Civelekoglu, H. Koseoglu, N. Cicek, M. Kitis, Desalination 231 (2008) 124.
[35] S. Adham, R.S. Trussell, Membrane bioreactors: Feasibility and use in water reclamation, Water Environment Research Foundation, 2001.
[36] B. Durmaz, F. Sanin, Environmental technology 24 (2003) 1331.
[37] X. Wang, Y. Chen, B. Yuan, X. Li, Y. Ren, Bioresource technology 161 (2014) 340.
[38] T. Stephenson, K. Brindle, S. Judd, B. Jefferson, Membrane bioreactors for wastewater treatment, IWA publishing, 2000.
Application of an airlift internal circulation membrane bioreactor for the treatment of textile wastewater
Year 2022,
Volume: 5 Issue: 1, 24 - 32, 31.03.2022
A large amount of water is used in the textile industry during the finishing and dyeing processes leading to the production of what is known as textile wastewaters. Textile wastewater is highly rich in COD and color and is characterized by relatively low biodegradability. This study aimed to investigate the treatability of reactive red dye-rich textile wastewater with the application of an airlift internal circulation membrane bioreactor (AIC-MBR). Experimental results demonstrated that high removal efficiencies of COD, NH3-N, and reactive red up to 99.70%, 97.83%, and 97.23%, respectively, can be achieved using the AIC-MBR system. Besides, EPS and SMP analyses reflected an SMP polysaccharide (PS) and protein (PN) membrane rejection that reached 88% and 72.6%, respectively. Finally, the capillary suction time measurement highlighted a good dewatering capacity of the sludge with a low membrane fouling tendency at the end of the operating period.
[5] G. Walker, L. Weatherley, Separation Science and Technology 35 (2000) 1329.
[6] S.H. Lin, M.L. Chen, Water research 31 (1997) 868.
[7] J. Naumczyk, L. Szpyrkowicz, F. Zilio-Grandi, Water Science and Technology 34 (1996) 17.
[8] S. Andleeb, N. Atiq, M.I. Ali, R. Razi-ul-Hussnain, M. Shafique, B. Ahmad, P.B. Ghumro, M. Hussain, A. Hameed, S. Ahmad, Int. J. Agric. Biol 12 (2010) 256.
[9] H.S. Erkan, N.B. Turan, G.O. Engin, Fouling control in MBR in a sustainable perspective, Elsevier. 2020, pp. 21.
[10] J. Merchuk, A. Contreras, F. Garcia, E. Molina, Chemical Engineering Science 53 (1998) 709.
[11] F. Yang, A. Bick, S. Shandalov, A. Brenner, G. Oron, Journal of Membrane Science 334 (2009) 83.
[12] R. Liu, X. Huang, C. Wang, L. Chen, Y. Qian, Process Biochemistry 36 (2000) 249.
[13] A. Sofia, W. Ng, S. Ong, Desalination 160 (2004) 67.
[14] F. Yang, A. Bick, S. Shandalov, G. Oron, Water science and technology 54 (2006) 155.
[15] A. Eaton, ΣΧΟΛΗ, ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ (2005).
[16] T. Li, R. Bai, J. Liu, Journal of biotechnology 135 (2008) 52.
[17] O. Lorwy, N. Rosenbrough, A. Farr, T. Randall, J. biol. Chem 193 (1951) 265.
[18] M. Dubois, K.A. Gilles, J.K. Hamilton, P.t. Rebers, F. Smith, Analytical chemistry 28 (1956) 350.
[19] F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, F. Yang, Water research 43 (2009) 1489.
[20] P. Bérubé, Sustainability Science and Engineering 2 (2010) 255.
[21] S. Judd, Trends in biotechnology 26 (2008) 109.
[22] F. Meng, H. Zhang, Y. Li, X. Zhang, F. Yang, Journal of Membrane Science 262 (2005) 107.
[23] Y. Fan, G. Li, L. Wu, W. Yang, C. Dong, H. Xu, W. Fan, Process Biochemistry 41 (2006) 1364.
[24] B.A. Poursat, R.J. van Spanning, P. de Voogt, J.R. Parsons, Critical Reviews in Environmental Science and Technology 49 (2019) 2220.
[25] F. Yang, Y. Wang, A. Bick, J. Gilron, A. Brenner, L. Gillerman, M. Herzberg, G. Oron, Desalination 284 (2012) 261.
[26] Q. Meng, F. Yang, L. Liu, F. Meng, Journal of Environmental Sciences 20 (2008) 933.
[27] D. Yaseen, M. Scholz, International journal of environmental science and technology 16 (2019) 1193.
[28] T. Panswad, W. Luangdilok, Water Research 34 (2000) 4177.
[29] H. Lin, M. Zhang, F. Wang, F. Meng, B.-Q. Liao, H. Hong, J. Chen, W. Gao, Journal of Membrane science 460 (2014) 110.
[30] S. Rosenberger, C. Laabs, B. Lesjean, R. Gnirss, G. Amy, M. Jekel, J.-C. Schrotter, Water research 40 (2006) 710.
[31] P. Le-Clech, V. Chen, T.A. Fane, Journal of membrane science 284 (2006) 17.
[32] C. Albasi, M. Hernandez Rojas, S. Schetrite, R. Van Kaam, Desalination 179 (2005) 95.
[33] N. Yigit, I. Harman, G. Civelekoglu, H. Koseoglu, N. Cicek, M. Kitis, Desalination 231 (2008) 124.
[5] G. Walker, L. Weatherley, Separation Science and Technology 35 (2000) 1329.
[6] S.H. Lin, M.L. Chen, Water research 31 (1997) 868.
[7] J. Naumczyk, L. Szpyrkowicz, F. Zilio-Grandi, Water Science and Technology 34 (1996) 17.
[8] S. Andleeb, N. Atiq, M.I. Ali, R. Razi-ul-Hussnain, M. Shafique, B. Ahmad, P.B. Ghumro, M. Hussain, A. Hameed, S. Ahmad, Int. J. Agric. Biol 12 (2010) 256.
[9] H.S. Erkan, N.B. Turan, G.O. Engin, Fouling control in MBR in a sustainable perspective, Elsevier. 2020, pp. 21.
[10] J. Merchuk, A. Contreras, F. Garcia, E. Molina, Chemical Engineering Science 53 (1998) 709.
[11] F. Yang, A. Bick, S. Shandalov, A. Brenner, G. Oron, Journal of Membrane Science 334 (2009) 83.
[12] R. Liu, X. Huang, C. Wang, L. Chen, Y. Qian, Process Biochemistry 36 (2000) 249.
[13] A. Sofia, W. Ng, S. Ong, Desalination 160 (2004) 67.
[14] F. Yang, A. Bick, S. Shandalov, G. Oron, Water science and technology 54 (2006) 155.
[15] A. Eaton, ΣΧΟΛΗ, ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ (2005).
[16] T. Li, R. Bai, J. Liu, Journal of biotechnology 135 (2008) 52.
[17] O. Lorwy, N. Rosenbrough, A. Farr, T. Randall, J. biol. Chem 193 (1951) 265.
[18] M. Dubois, K.A. Gilles, J.K. Hamilton, P.t. Rebers, F. Smith, Analytical chemistry 28 (1956) 350.
[19] F. Meng, S.-R. Chae, A. Drews, M. Kraume, H.-S. Shin, F. Yang, Water research 43 (2009) 1489.
[20] P. Bérubé, Sustainability Science and Engineering 2 (2010) 255.
[21] S. Judd, Trends in biotechnology 26 (2008) 109.
[22] F. Meng, H. Zhang, Y. Li, X. Zhang, F. Yang, Journal of Membrane Science 262 (2005) 107.
[23] Y. Fan, G. Li, L. Wu, W. Yang, C. Dong, H. Xu, W. Fan, Process Biochemistry 41 (2006) 1364.
[24] B.A. Poursat, R.J. van Spanning, P. de Voogt, J.R. Parsons, Critical Reviews in Environmental Science and Technology 49 (2019) 2220.
[25] F. Yang, Y. Wang, A. Bick, J. Gilron, A. Brenner, L. Gillerman, M. Herzberg, G. Oron, Desalination 284 (2012) 261.
[26] Q. Meng, F. Yang, L. Liu, F. Meng, Journal of Environmental Sciences 20 (2008) 933.
[27] D. Yaseen, M. Scholz, International journal of environmental science and technology 16 (2019) 1193.
[28] T. Panswad, W. Luangdilok, Water Research 34 (2000) 4177.
[29] H. Lin, M. Zhang, F. Wang, F. Meng, B.-Q. Liao, H. Hong, J. Chen, W. Gao, Journal of Membrane science 460 (2014) 110.
[30] S. Rosenberger, C. Laabs, B. Lesjean, R. Gnirss, G. Amy, M. Jekel, J.-C. Schrotter, Water research 40 (2006) 710.
[31] P. Le-Clech, V. Chen, T.A. Fane, Journal of membrane science 284 (2006) 17.
[32] C. Albasi, M. Hernandez Rojas, S. Schetrite, R. Van Kaam, Desalination 179 (2005) 95.
[33] N. Yigit, I. Harman, G. Civelekoglu, H. Koseoglu, N. Cicek, M. Kitis, Desalination 231 (2008) 124.
[35] S. Adham, R.S. Trussell, Membrane bioreactors: Feasibility and use in water reclamation, Water Environment Research Foundation, 2001.
[36] B. Durmaz, F. Sanin, Environmental technology 24 (2003) 1331.
[37] X. Wang, Y. Chen, B. Yuan, X. Li, Y. Ren, Bioresource technology 161 (2014) 340.
[38] T. Stephenson, K. Brindle, S. Judd, B. Jefferson, Membrane bioreactors for wastewater treatment, IWA publishing, 2000.
Çağlak, A., Bakaraki Turan, N., Erkan, H., Engin, G. Ö. (2022). Application of an airlift internal circulation membrane bioreactor for the treatment of textile wastewater. Environmental Research and Technology, 5(1), 24-32. https://doi.org/10.35208/ert.917337
AMA
Çağlak A, Bakaraki Turan N, Erkan H, Engin GÖ. Application of an airlift internal circulation membrane bioreactor for the treatment of textile wastewater. ERT. March 2022;5(1):24-32. doi:10.35208/ert.917337
Chicago
Çağlak, Abdulkadir, Nouha Bakaraki Turan, Hanife Erkan, and Güleda Önkal Engin. “Application of an Airlift Internal Circulation Membrane Bioreactor for the Treatment of Textile Wastewater”. Environmental Research and Technology 5, no. 1 (March 2022): 24-32. https://doi.org/10.35208/ert.917337.
EndNote
Çağlak A, Bakaraki Turan N, Erkan H, Engin GÖ (March 1, 2022) Application of an airlift internal circulation membrane bioreactor for the treatment of textile wastewater. Environmental Research and Technology 5 1 24–32.
IEEE
A. Çağlak, N. Bakaraki Turan, H. Erkan, and G. Ö. Engin, “Application of an airlift internal circulation membrane bioreactor for the treatment of textile wastewater”, ERT, vol. 5, no. 1, pp. 24–32, 2022, doi: 10.35208/ert.917337.
ISNAD
Çağlak, Abdulkadir et al. “Application of an Airlift Internal Circulation Membrane Bioreactor for the Treatment of Textile Wastewater”. Environmental Research and Technology 5/1 (March 2022), 24-32. https://doi.org/10.35208/ert.917337.
JAMA
Çağlak A, Bakaraki Turan N, Erkan H, Engin GÖ. Application of an airlift internal circulation membrane bioreactor for the treatment of textile wastewater. ERT. 2022;5:24–32.
MLA
Çağlak, Abdulkadir et al. “Application of an Airlift Internal Circulation Membrane Bioreactor for the Treatment of Textile Wastewater”. Environmental Research and Technology, vol. 5, no. 1, 2022, pp. 24-32, doi:10.35208/ert.917337.
Vancouver
Çağlak A, Bakaraki Turan N, Erkan H, Engin GÖ. Application of an airlift internal circulation membrane bioreactor for the treatment of textile wastewater. ERT. 2022;5(1):24-32.