Research Article
BibTex RIS Cite

Thermal analysis of St. John's Wort wastes and biochars: A study of combustion characteristics and kinetics

Year 2024, Volume: 7 Issue: 3, 395 - 405, 30.09.2024
https://doi.org/10.35208/ert.1385026

Abstract

St. John's wort, extensively utilized in industries such as food, medicine, and cosmetics, generates substantial biomass waste. Utilizing these wastes is crucial to reducing environmental harm and making an economic contribution. This study aimed to determine the potential of St. John's wort wastes and biochar forms produced from these wastes to be used as solid fuel. In this context, the combustion behavior of the biomass and biochar were determined by thermogravimetric analysis method. Additionally, the Kissenger-Akahira-Sunosa and Flynn-Wall-Ozawa techniques were used to compute the combustion activation energies of these samples. According to the analysis, biomass combustion commenced at approximately 250°C and occurred in two stages, whereas biochar combustion initiated at around 400°C and proceeded in a single stage. Furthermore, over 90% of the mass from both samples was observed to decompose during combustion, with average combustion activation energies ranging between 70.08 and 203.86 kJ/mol for biomass and biochar, respectively. These findings suggest that biomass exhibits more readily combustible characteristics compared to biochar but is less energy efficient. In conclusion, optimizing the biochar production process could enhance its energy efficiency and potentially narrow the performance gap between biomass and biochar. Additionally, further research into alternative methods or additives to improve the energy efficiency of biomass combustion is warranted.

References

  • S. Babu, S. S. Rathore, R. Singh, S. Kumar, V. K. Singh, S. K. Yadav, ... and O. A. Wani, “Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review,” Bioresource Technology, Vol. 360, Article 127566, 2022. [CrossRef]
  • A. Siddiqua, J. N. Hahladakis, and W. A. K. A. Al-Attiya, “An overview of the environmental pollution and health effects associated with waste landfilling and open dumping,” Environmental Science and Pollution Research, Vol. 29(39), pp. 58514–58536, 2022. [CrossRef]
  • L. Reijnders, “Hazardous waste incineration ashes and their utilization,” Encyclopedia of Sustainability Science and Technology, pp. 1–17, 2018. [CrossRef]
  • Y. A. Hajam, R. Kumar, and A. Kumar, “Environmental waste management strategies and vermi transformation for sustainable development,” Environmental Challenges, Vol. 13, Article 100747, 2023. [CrossRef]
  • X. Peng, Y. Jiang, Z. Chen, A. I. Osman, M. Farghali, D. W. Rooney, and P.-S. Yap, “Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review,” Environmental Chemistry Letters, Vol. 21(2), pp. 765–801, 2023. [CrossRef]
  • K. Wang, and J. W. Tester, “Sustainable management of unavoidable biomass wastes,” Green Energy and Resources, Vol. 1(1), Article 100005, 2023. [CrossRef]
  • M. Kumar, “Social, Economic, and Environmental Impacts of Renewable Energy Resources,” in Wind Solar Hybrid Renewable Energy System, IntechOpen, 2020. [CrossRef]
  • H. Durak, “Comprehensive assessment of thermochemical processes for sustainable waste management and resource recovery,” Processes, Vol. 11(7), Article 2092, 2023. [CrossRef]
  • D. Özçimen, B. İnan, S. Akış, and A. T. Koçer, “Utilization alternatives of algal wastes for solid algal products” in Algal biorefineries volume products and refinery design, Springer, 2015. [CrossRef]
  • X. Pan, Z. Gu, W. Chen, and Q. Li, “Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review,” Science of Total Environment, Vol. 754, Article 142104, 2021. [CrossRef]
  • A. T. Koçer, “A thermokinetic characterization study on combustion of solid biofuels from Aloe vera residue,” Rendiconti Lincei – Scienze Fisiche e Naturali, Vol. 34(2), pp. 1031–1043, 2023. [CrossRef]
  • D. I. Aslan, B. Özoğul, S. Ceylan, and F. Geyikçi, “Thermokinetic analysis and product characterization of Medium Density Fiberboard pyrolysis,” Bioresource Technology, Vol. 258, pp. 105–110, 2018. [CrossRef]
  • A. T. Koçer and D. Özçimen, “Determination of combustion characteristics and kinetic parameters of Ulva lactuca and its biochar,” Biomass Convers Biorefinery, Vol. 14, pp. 59135922, 2021 [CrossRef]
  • A. T. Koçer, D. Özçimen, and İ. Gökalp, “An experimental study on the combustion behaviours of orange peel-based solid biofuels,” Biomass Conversion and Biorefinery, 2023. doi: 10.1007/s13399-020-01245-4 [CrossRef]
  • W. Tong, Z. Cai, Q. Liu, S. Ren, and M. Kong, “Effect of pyrolysis temperature on bamboo char combustion: Reactivity, kinetics and thermodynamics,” Energy, Vol. 211, Article 118736, 2020. [CrossRef]
  • C. A. Peterson and R. C. Brown, “Oxidation kinetics of biochar from woody and herbaceous biomass,” Chemical Engineering Journal, Vol. 401, Article 126043, 2020. [CrossRef]
  • K. M. Klemow, A. Bartlow, J. Crawford, N. Kocher, J. Shah, and M. Ritsick, “Medical attributes of St. John’s wort (hypericum perforatum),” in Herbal Medicine: Biomolecular and Clinical Aspects: Second Edition, pp. 211–237, 2011. [CrossRef]
  • I. Arsić, A. Zugić, V. Tadić, M. Tasić-Kostov, D. Mišić, M. Primorac, D. Runjaić-Antić, “Estimation of Dermatological Application of Creams with St. John’s Wort Oil Extracts,” Molecules, Vol. 17(1), pp. 275–294, 2011. [CrossRef]
  • F. Ateş, G. Akan, and N. Erginel, “Estimating the levels of process parameters for tar and char production via fast pyrolysis of Hypericum perforatum and characterization of the products,” Chemical Data Collections, Vol. 33, Article 100720, 2021. [CrossRef]
  • J. J. Lu, and W. H. Chen, “Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis,” Applied Energy, Vol. 160, pp. 49–57, 2015. [CrossRef]
  • R. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, “Characterization of Spanish biomass wastes for energy use,” Bioresource Technology, Vol. 103(1), pp. 249–258, 2012. [CrossRef]
  • J. Parikh, S. A. Channiwala, and G. K. Ghosal, “A correlation for calculating HHV from proximate analysis of solid fuels,” Fuel, Vol. 84(5), pp. 487–494, 2005. [CrossRef]
  • S. Poomsawat, and W. Poomsawat, “Analysis of hydrochar fuel characterization and combustion behavior derived from aquatic biomass via hydrothermal carbonization process,” Case Studies in Thermal Engineering, Vol. 27, Article 101255, 2021. [CrossRef]
  • D. R. Nhuchhen, “Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis,” Fuel, Vol. 180, pp. 348–356, 2016. [CrossRef]
  • I. Ali, and A. Bahadar, “Thermogravimetric characteristics and non-isothermal kinetics of macro-algae with an emphasis on the possible partial gasification at higher temperatures,” Frontiers in Energy Research, Vol. 7, pp. 1–14, 2019. [CrossRef]
  • H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Analytical Chemistry, Vol. 29(11), pp. 1702–1706, 1957. [CrossRef]
  • J. H. Flynn, and L. A. Wall, “A quick, direct method for the determination of activation energy from thermogravimetric data,” Journal of Polymer Science. Part B: Polymer Letters, Vol. 4(5), pp. 323–328, 1966. [CrossRef]
  • T. Ozawa, “A new method of analyzing thermogravimetric data,” Bulletin of the Chemical Society of Japan, Vol. 38(11), pp. 1881–1886, 1965. [CrossRef]
  • A. Selvarajoo, Y. L. Wong, K. S. Khoo, W. H. Chen, and P. L. Show, “Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel,” Chemosphere, Vol. 294, Article 133671, 2022.
  • M. I. Al-Wabel, A. Al-Omran, A. H. El-Naggar, M. Nadeem, and A. R. A. Usman, “Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes,” Bioresource Technology, Vol. 131, pp. 374–379, 2013. [CrossRef]
  • R. Calvelo Pereira, J. Kaal, M. Camps Arbestain, R. Pardo Lorenzo, W. Aitkenhead, M. Hedley, … J. A. Maciá-Agulló, “Contribution to characterisation of biochar to estimate the labile fraction of carbon,” Organic Geochemistry, Vol. 42(11), pp. 1331–1342, 2011. [CrossRef]
  • A. T. Koçer, B. Mutlu, and D. Özçimen, “Investigation of biochar production potential and pyrolysis kinetics characteristics of microalgal biomass,” Biomass Convers. Biorefinery, Vol. 10(1), pp. 85–94, 2020. [CrossRef]
  • S. Z. Tarhan, A. T. Koçer, D. Özçimen, and İ. Gökalp, “Cultivation of green microalgae by recovering aqueous nutrients in hydrothermal carbonization process water of biomass wastes,” Journal of Water Process Engineering, Vol. 40, Article 101783, 2021. [CrossRef]
  • Y. W. Mak, L. O. Chuah, R. Ahmad, and R. Bhat, “Antioxidant and antibacterial activities of hibiscus (Hibiscus rosa-sinensis L.) and Cassia (Senna bicapsularis L.) flower extracts,” Journal of King Saud University, Vol. 25(4), pp. 275–282, 2013. [CrossRef]
  • M. Sekkal, J.-P. Huvenne, P. Legrand, B. Sombret, J.-C. Mollet, A. Mouradi-Givernaud, and M.-C. Verdus, “Direct structural identification of polysaccharides from red algae by FTIR microspectrometry I: Localization of agar in Gracilaria verrucosa sections,” Mikrochim. Acta, vol. 112, no. 1–4, pp. 1–10, 1993. [CrossRef]
  • A. T. Koçer, B. İnan, S. Kaptan Usul, D. Özçimen, M. T. Yılmaz, and İ. Işıldak, “Exopolysaccharides from microalgae: production, characterization, optimization and techno-economic assessment,” Brazilian Journal of Microbiology, Vol. 52(4), pp. 1779–1790, 2021. [CrossRef]
  • M. S. Reza, S. Afroze, M. S. A. Bakar, R. Saidur, N. Aslfattahi, J. Taweekun, and A. K. Azad, “Biochar characterization of invasive Pennisetum purpureum grass: effect of pyrolysis temperature,” Biochar, Vol. 2(2), pp. 239–251, 2020. [CrossRef]
  • A. T. Koçer, A. Erarslan, and D. Özçimen, “Pyrolysis of Aloe vera leaf wastes for biochar production: Kinetics and thermodynamics analysis,” Industrial Crops and Products, Vol. 204, Article 117354, 2023. [CrossRef]
  • A. Agrawal, and S. Chakraborty, “A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis,” Bioresource Technology, Vol. 128, pp. 72–80, 2013. [CrossRef]
  • I. Mian, X. Li, O. D. Dacres, J. Wang, B. Wei, Y. Jian, ... and N. Rahman, “Combustion kinetics and mechanism of biomass pellet,” Energy, Vol. 205, Article 117909, 2020. [CrossRef]
  • R. López, C. Fernández, X. Gómez, O. Martínez, and M. E. Sánchez, “Thermogravimetric analysis of lignocellulosic and microalgae biomasses and their blends during combustion,” Journal of Thermal Analysis and Calorimetry, Vol. 114(1), pp. 295–305, 2013. [CrossRef]
  • S. Y. Yorulmaz, and A. T. Atimtay, “Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis,” Fuel Processing Technology, Vol. 90(7–8), pp. 939–946, 2009. [CrossRef]
  • M. Gao, D. X. Pan, and C. Y. Sun, “Study on the thermal degradation of wood treated with amino resin and amino resin modified with phosphoric acid,” Journal of Fire Sciences, Vol. 21(3), pp. 189–201, 2003. [CrossRef]
  • M. A. Islam, M. Auta, G. Kabir, and B. H. Hameed, “A thermogravimetric analysis of the combustion kinetics of karanja (Pongamia pinnata) fruit hulls char,” Bioresource Technology, Vol. 200, pp. 335–341, 2016. [CrossRef]
  • P. Wang, G. Wang, J. Zhang, J. Y. Lee, Y. Li, and C. Wang, “Co-combustion characteristics and kinetic study of anthracite coal and palm kernel shell char,” Applied Thermal Engineering, Vol. 143, pp. 736–745, 2018. [CrossRef]
  • Y. Yu, X. Fu, L. Yu, R. Liu, and J. Cai, “Combustion kinetics of pine sawdust biochar,” Journal of Thermal Analysis and Calorimetry, Vol. 124(3), pp. 1641–1649, 2016. [CrossRef]
  • M. A. Islam, G. Kabir, M. Asif, and B. H. Hameed, “Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis,” Bioresource Technology, Vol. 194, pp. 14–20, 2015. [CrossRef]
  • H. Wang, and C. You, “Experimental investigation into the spontaneous ignition behavior of upgraded coal products,” Energy and Fuels, Vol. 28(3), pp. 2267–2271, 2014. [CrossRef]
  • H. Gao and J. Li, “Thermogravimetric analysis of the co-combustion of coal and polyvinyl chloride,” PLoS One, Vol. 14(10), Article e0224401, 2019. [CrossRef]
  • L. C. Morais, A. A. D. Maia, M. E. G. Guandique, and A. H. Rosa, “Pyrolysis and combustion of sugarcane bagasse,” Journal of Thermal Analysis and Calorimetry, Vol. 129(3), pp. 1813–1822, 2017. [CrossRef]
  • C. Gai, Z. Liu, G. Han, N. Peng, and A. Fan, “Combustion behavior and kinetics of low-lipid microalgae via thermogravimetric analysis,” Bioresource Technology, Vol. 181, pp. 148–154, 2015. [CrossRef]
  • T. Chen, J. Cai, and R. Liu, “Combustion kinetics of biochar from fast pyrolysis of pine sawdust: isoconversional analysis,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 37, no. 20, pp. 2208–2217, 2015. [CrossRef]
Year 2024, Volume: 7 Issue: 3, 395 - 405, 30.09.2024
https://doi.org/10.35208/ert.1385026

Abstract

References

  • S. Babu, S. S. Rathore, R. Singh, S. Kumar, V. K. Singh, S. K. Yadav, ... and O. A. Wani, “Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review,” Bioresource Technology, Vol. 360, Article 127566, 2022. [CrossRef]
  • A. Siddiqua, J. N. Hahladakis, and W. A. K. A. Al-Attiya, “An overview of the environmental pollution and health effects associated with waste landfilling and open dumping,” Environmental Science and Pollution Research, Vol. 29(39), pp. 58514–58536, 2022. [CrossRef]
  • L. Reijnders, “Hazardous waste incineration ashes and their utilization,” Encyclopedia of Sustainability Science and Technology, pp. 1–17, 2018. [CrossRef]
  • Y. A. Hajam, R. Kumar, and A. Kumar, “Environmental waste management strategies and vermi transformation for sustainable development,” Environmental Challenges, Vol. 13, Article 100747, 2023. [CrossRef]
  • X. Peng, Y. Jiang, Z. Chen, A. I. Osman, M. Farghali, D. W. Rooney, and P.-S. Yap, “Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review,” Environmental Chemistry Letters, Vol. 21(2), pp. 765–801, 2023. [CrossRef]
  • K. Wang, and J. W. Tester, “Sustainable management of unavoidable biomass wastes,” Green Energy and Resources, Vol. 1(1), Article 100005, 2023. [CrossRef]
  • M. Kumar, “Social, Economic, and Environmental Impacts of Renewable Energy Resources,” in Wind Solar Hybrid Renewable Energy System, IntechOpen, 2020. [CrossRef]
  • H. Durak, “Comprehensive assessment of thermochemical processes for sustainable waste management and resource recovery,” Processes, Vol. 11(7), Article 2092, 2023. [CrossRef]
  • D. Özçimen, B. İnan, S. Akış, and A. T. Koçer, “Utilization alternatives of algal wastes for solid algal products” in Algal biorefineries volume products and refinery design, Springer, 2015. [CrossRef]
  • X. Pan, Z. Gu, W. Chen, and Q. Li, “Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review,” Science of Total Environment, Vol. 754, Article 142104, 2021. [CrossRef]
  • A. T. Koçer, “A thermokinetic characterization study on combustion of solid biofuels from Aloe vera residue,” Rendiconti Lincei – Scienze Fisiche e Naturali, Vol. 34(2), pp. 1031–1043, 2023. [CrossRef]
  • D. I. Aslan, B. Özoğul, S. Ceylan, and F. Geyikçi, “Thermokinetic analysis and product characterization of Medium Density Fiberboard pyrolysis,” Bioresource Technology, Vol. 258, pp. 105–110, 2018. [CrossRef]
  • A. T. Koçer and D. Özçimen, “Determination of combustion characteristics and kinetic parameters of Ulva lactuca and its biochar,” Biomass Convers Biorefinery, Vol. 14, pp. 59135922, 2021 [CrossRef]
  • A. T. Koçer, D. Özçimen, and İ. Gökalp, “An experimental study on the combustion behaviours of orange peel-based solid biofuels,” Biomass Conversion and Biorefinery, 2023. doi: 10.1007/s13399-020-01245-4 [CrossRef]
  • W. Tong, Z. Cai, Q. Liu, S. Ren, and M. Kong, “Effect of pyrolysis temperature on bamboo char combustion: Reactivity, kinetics and thermodynamics,” Energy, Vol. 211, Article 118736, 2020. [CrossRef]
  • C. A. Peterson and R. C. Brown, “Oxidation kinetics of biochar from woody and herbaceous biomass,” Chemical Engineering Journal, Vol. 401, Article 126043, 2020. [CrossRef]
  • K. M. Klemow, A. Bartlow, J. Crawford, N. Kocher, J. Shah, and M. Ritsick, “Medical attributes of St. John’s wort (hypericum perforatum),” in Herbal Medicine: Biomolecular and Clinical Aspects: Second Edition, pp. 211–237, 2011. [CrossRef]
  • I. Arsić, A. Zugić, V. Tadić, M. Tasić-Kostov, D. Mišić, M. Primorac, D. Runjaić-Antić, “Estimation of Dermatological Application of Creams with St. John’s Wort Oil Extracts,” Molecules, Vol. 17(1), pp. 275–294, 2011. [CrossRef]
  • F. Ateş, G. Akan, and N. Erginel, “Estimating the levels of process parameters for tar and char production via fast pyrolysis of Hypericum perforatum and characterization of the products,” Chemical Data Collections, Vol. 33, Article 100720, 2021. [CrossRef]
  • J. J. Lu, and W. H. Chen, “Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis,” Applied Energy, Vol. 160, pp. 49–57, 2015. [CrossRef]
  • R. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, “Characterization of Spanish biomass wastes for energy use,” Bioresource Technology, Vol. 103(1), pp. 249–258, 2012. [CrossRef]
  • J. Parikh, S. A. Channiwala, and G. K. Ghosal, “A correlation for calculating HHV from proximate analysis of solid fuels,” Fuel, Vol. 84(5), pp. 487–494, 2005. [CrossRef]
  • S. Poomsawat, and W. Poomsawat, “Analysis of hydrochar fuel characterization and combustion behavior derived from aquatic biomass via hydrothermal carbonization process,” Case Studies in Thermal Engineering, Vol. 27, Article 101255, 2021. [CrossRef]
  • D. R. Nhuchhen, “Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis,” Fuel, Vol. 180, pp. 348–356, 2016. [CrossRef]
  • I. Ali, and A. Bahadar, “Thermogravimetric characteristics and non-isothermal kinetics of macro-algae with an emphasis on the possible partial gasification at higher temperatures,” Frontiers in Energy Research, Vol. 7, pp. 1–14, 2019. [CrossRef]
  • H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Analytical Chemistry, Vol. 29(11), pp. 1702–1706, 1957. [CrossRef]
  • J. H. Flynn, and L. A. Wall, “A quick, direct method for the determination of activation energy from thermogravimetric data,” Journal of Polymer Science. Part B: Polymer Letters, Vol. 4(5), pp. 323–328, 1966. [CrossRef]
  • T. Ozawa, “A new method of analyzing thermogravimetric data,” Bulletin of the Chemical Society of Japan, Vol. 38(11), pp. 1881–1886, 1965. [CrossRef]
  • A. Selvarajoo, Y. L. Wong, K. S. Khoo, W. H. Chen, and P. L. Show, “Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel,” Chemosphere, Vol. 294, Article 133671, 2022.
  • M. I. Al-Wabel, A. Al-Omran, A. H. El-Naggar, M. Nadeem, and A. R. A. Usman, “Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes,” Bioresource Technology, Vol. 131, pp. 374–379, 2013. [CrossRef]
  • R. Calvelo Pereira, J. Kaal, M. Camps Arbestain, R. Pardo Lorenzo, W. Aitkenhead, M. Hedley, … J. A. Maciá-Agulló, “Contribution to characterisation of biochar to estimate the labile fraction of carbon,” Organic Geochemistry, Vol. 42(11), pp. 1331–1342, 2011. [CrossRef]
  • A. T. Koçer, B. Mutlu, and D. Özçimen, “Investigation of biochar production potential and pyrolysis kinetics characteristics of microalgal biomass,” Biomass Convers. Biorefinery, Vol. 10(1), pp. 85–94, 2020. [CrossRef]
  • S. Z. Tarhan, A. T. Koçer, D. Özçimen, and İ. Gökalp, “Cultivation of green microalgae by recovering aqueous nutrients in hydrothermal carbonization process water of biomass wastes,” Journal of Water Process Engineering, Vol. 40, Article 101783, 2021. [CrossRef]
  • Y. W. Mak, L. O. Chuah, R. Ahmad, and R. Bhat, “Antioxidant and antibacterial activities of hibiscus (Hibiscus rosa-sinensis L.) and Cassia (Senna bicapsularis L.) flower extracts,” Journal of King Saud University, Vol. 25(4), pp. 275–282, 2013. [CrossRef]
  • M. Sekkal, J.-P. Huvenne, P. Legrand, B. Sombret, J.-C. Mollet, A. Mouradi-Givernaud, and M.-C. Verdus, “Direct structural identification of polysaccharides from red algae by FTIR microspectrometry I: Localization of agar in Gracilaria verrucosa sections,” Mikrochim. Acta, vol. 112, no. 1–4, pp. 1–10, 1993. [CrossRef]
  • A. T. Koçer, B. İnan, S. Kaptan Usul, D. Özçimen, M. T. Yılmaz, and İ. Işıldak, “Exopolysaccharides from microalgae: production, characterization, optimization and techno-economic assessment,” Brazilian Journal of Microbiology, Vol. 52(4), pp. 1779–1790, 2021. [CrossRef]
  • M. S. Reza, S. Afroze, M. S. A. Bakar, R. Saidur, N. Aslfattahi, J. Taweekun, and A. K. Azad, “Biochar characterization of invasive Pennisetum purpureum grass: effect of pyrolysis temperature,” Biochar, Vol. 2(2), pp. 239–251, 2020. [CrossRef]
  • A. T. Koçer, A. Erarslan, and D. Özçimen, “Pyrolysis of Aloe vera leaf wastes for biochar production: Kinetics and thermodynamics analysis,” Industrial Crops and Products, Vol. 204, Article 117354, 2023. [CrossRef]
  • A. Agrawal, and S. Chakraborty, “A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis,” Bioresource Technology, Vol. 128, pp. 72–80, 2013. [CrossRef]
  • I. Mian, X. Li, O. D. Dacres, J. Wang, B. Wei, Y. Jian, ... and N. Rahman, “Combustion kinetics and mechanism of biomass pellet,” Energy, Vol. 205, Article 117909, 2020. [CrossRef]
  • R. López, C. Fernández, X. Gómez, O. Martínez, and M. E. Sánchez, “Thermogravimetric analysis of lignocellulosic and microalgae biomasses and their blends during combustion,” Journal of Thermal Analysis and Calorimetry, Vol. 114(1), pp. 295–305, 2013. [CrossRef]
  • S. Y. Yorulmaz, and A. T. Atimtay, “Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis,” Fuel Processing Technology, Vol. 90(7–8), pp. 939–946, 2009. [CrossRef]
  • M. Gao, D. X. Pan, and C. Y. Sun, “Study on the thermal degradation of wood treated with amino resin and amino resin modified with phosphoric acid,” Journal of Fire Sciences, Vol. 21(3), pp. 189–201, 2003. [CrossRef]
  • M. A. Islam, M. Auta, G. Kabir, and B. H. Hameed, “A thermogravimetric analysis of the combustion kinetics of karanja (Pongamia pinnata) fruit hulls char,” Bioresource Technology, Vol. 200, pp. 335–341, 2016. [CrossRef]
  • P. Wang, G. Wang, J. Zhang, J. Y. Lee, Y. Li, and C. Wang, “Co-combustion characteristics and kinetic study of anthracite coal and palm kernel shell char,” Applied Thermal Engineering, Vol. 143, pp. 736–745, 2018. [CrossRef]
  • Y. Yu, X. Fu, L. Yu, R. Liu, and J. Cai, “Combustion kinetics of pine sawdust biochar,” Journal of Thermal Analysis and Calorimetry, Vol. 124(3), pp. 1641–1649, 2016. [CrossRef]
  • M. A. Islam, G. Kabir, M. Asif, and B. H. Hameed, “Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis,” Bioresource Technology, Vol. 194, pp. 14–20, 2015. [CrossRef]
  • H. Wang, and C. You, “Experimental investigation into the spontaneous ignition behavior of upgraded coal products,” Energy and Fuels, Vol. 28(3), pp. 2267–2271, 2014. [CrossRef]
  • H. Gao and J. Li, “Thermogravimetric analysis of the co-combustion of coal and polyvinyl chloride,” PLoS One, Vol. 14(10), Article e0224401, 2019. [CrossRef]
  • L. C. Morais, A. A. D. Maia, M. E. G. Guandique, and A. H. Rosa, “Pyrolysis and combustion of sugarcane bagasse,” Journal of Thermal Analysis and Calorimetry, Vol. 129(3), pp. 1813–1822, 2017. [CrossRef]
  • C. Gai, Z. Liu, G. Han, N. Peng, and A. Fan, “Combustion behavior and kinetics of low-lipid microalgae via thermogravimetric analysis,” Bioresource Technology, Vol. 181, pp. 148–154, 2015. [CrossRef]
  • T. Chen, J. Cai, and R. Liu, “Combustion kinetics of biochar from fast pyrolysis of pine sawdust: isoconversional analysis,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 37, no. 20, pp. 2208–2217, 2015. [CrossRef]
There are 52 citations in total.

Details

Primary Language English
Subjects Waste Management, Reduction, Reuse and Recycling, Biomass Energy Systems, Energy
Journal Section Research Articles
Authors

Anıl Tevfik Koçer 0000-0003-1519-1711

Publication Date September 30, 2024
Submission Date November 2, 2023
Acceptance Date April 22, 2024
Published in Issue Year 2024 Volume: 7 Issue: 3

Cite

APA Koçer, A. T. (2024). Thermal analysis of St. John’s Wort wastes and biochars: A study of combustion characteristics and kinetics. Environmental Research and Technology, 7(3), 395-405. https://doi.org/10.35208/ert.1385026
AMA Koçer AT. Thermal analysis of St. John’s Wort wastes and biochars: A study of combustion characteristics and kinetics. ERT. September 2024;7(3):395-405. doi:10.35208/ert.1385026
Chicago Koçer, Anıl Tevfik. “Thermal Analysis of St. John’s Wort Wastes and Biochars: A Study of Combustion Characteristics and Kinetics”. Environmental Research and Technology 7, no. 3 (September 2024): 395-405. https://doi.org/10.35208/ert.1385026.
EndNote Koçer AT (September 1, 2024) Thermal analysis of St. John’s Wort wastes and biochars: A study of combustion characteristics and kinetics. Environmental Research and Technology 7 3 395–405.
IEEE A. T. Koçer, “Thermal analysis of St. John’s Wort wastes and biochars: A study of combustion characteristics and kinetics”, ERT, vol. 7, no. 3, pp. 395–405, 2024, doi: 10.35208/ert.1385026.
ISNAD Koçer, Anıl Tevfik. “Thermal Analysis of St. John’s Wort Wastes and Biochars: A Study of Combustion Characteristics and Kinetics”. Environmental Research and Technology 7/3 (September 2024), 395-405. https://doi.org/10.35208/ert.1385026.
JAMA Koçer AT. Thermal analysis of St. John’s Wort wastes and biochars: A study of combustion characteristics and kinetics. ERT. 2024;7:395–405.
MLA Koçer, Anıl Tevfik. “Thermal Analysis of St. John’s Wort Wastes and Biochars: A Study of Combustion Characteristics and Kinetics”. Environmental Research and Technology, vol. 7, no. 3, 2024, pp. 395-0, doi:10.35208/ert.1385026.
Vancouver Koçer AT. Thermal analysis of St. John’s Wort wastes and biochars: A study of combustion characteristics and kinetics. ERT. 2024;7(3):395-40.