Research Article
BibTex RIS Cite

Performance evaluation of a simple electrochemical treatment model for saline wastewaters: Part A

Year 2025, Volume: 8 Issue: 1, 196 - 223, 31.03.2025
https://doi.org/10.35208/ert.1462704

Abstract

This paper examined the efficacies of the electrochemical treatment (Ett) technique in the reduction of chloride ion (Cl-) from saline (salty) wastewaters (brine). Saline wastewaters (Sw) concentrations between 10 g/l and 40 g/l of Cl- were prepared and subjected to Ett utilising a locally developed composite carbon–resin (as the anode) and aluminium (as the cathode) electrodes. Ett of the simulated brine was conducted on a laboratory scale. The influence of selected factors on the efficacy of the Ett process was monitored utilising fractional factorial experiments. These selected factors were optimized using steepest descent technique (between the minimum and maximum concentrations) and rate change of Cl- removal efficacy through Microsoft Excel Solver. The optimum values of these selected factors were used to purify typical raw saline water. Efficacies of the Ett process in removing Cl- from the typical raw saline water was utilised to predict efficacy of the system using typical Cl- concentration in seawater based on literature, previous and published studies. The study revealed the relationship between chloride removal efficacy (%), initial concentration of chloride, current through the wastewater and separation distance between the electrodes were best in the form of exponentials with coefficient of determination of 0.979, 0.920 and 0.977, respectively. The optimum values of these selected factors such as current, pH, treatment period and separation distance between the electrode (centre to centre of the electrode) were 10.5 A equivalent to 0.795 A cm-2, 6.7, 2.75 hr and 42 mm, respectively. It was concluded that Ett with composite carbon-resin electrodes is among effective tools for removing Cl- from saline wastewater during Ett. The performance of the treatment technique was between 68.52 and 94.82 %.

Ethical Statement

Not Applicable

Supporting Institution

Nil

Project Number

Not Applicable

References

  • S. Ahmadzadeh, and M. Dolatabadi, “Modeling and kinetics study of electrochemical peroxidation process for mineralization of bisphenol A; a new paradigm for groundwater treatment,” Journal of Molecular Liquids, Vol. 254, pp. 76–82, 2018. [CrossRef]
  • R. Kamaraj, A. Pandiarajan, M. R. Gandhi, A. Shibayama, and S. Vasudevan, “Eco–friendly and easily prepared graphene nanosheets for safe drinking water: removal of chlorophenoxyacetic acid herbicides,” Chemistry Select, Vol. 2, pp. 342–355, 2017. [CrossRef]
  • A. Mojiri, A. P Trzcinski, M. J. K Bashir, and S. S. Abu Amr, “Editorial: Innovative treatment technologies for sustainable water and wastewater management,” Frontiers in Water, Vol. 6, Article 1388387, 2024. [CrossRef]
  • M. Topal, E. I. Arslan Topal, and E. Öbek, “Potential human health risk from toxic/carcinogenic arsenic in ripe and unripe tomatoes grown in wastewater exposed zone,” International Journal of Pure and Applied Sciences, Vol. 10(1), pp. 8999, 2024. [CrossRef]
  • M. Khan, and I. M. Lo, “Removal of ionizable aromatic pollutants from contaminated water using nano γ-Fe2 O3 based magnetic cationic hydrogel: sorptive performance, magnetic separation and reusability,” Journal of Hazardous. Materials, Vol. 322, pp 195–204, 2017. [CrossRef]
  • C. Majumder, and A. Gupta, “Prediction of arsenic removal by electrocoagulation: Model development by factorial design,” Journal of Hazardous Toxic and Radioactive Waste, Vol. 15, pp 48–54, 2010. [CrossRef]
  • A. Maldonado-Reyes, C. Montero-Ocampo, and O. Solorza-Feria, “Remediation of drinking water contaminated with arsenic by the electro-removal process using different metal electrodes,” Journal Environmental Monitoring, Vol. 9, pp. 1241–1247, 2007. [CrossRef]
  • A. M. Atta, H. A. Al-Lohedan, A. O. Ezzat, A. M. Tawfik, and A. I. Hashem “Synthesis of zinc oxide nanocomposites using poly (ionic liquids) based on quaternary ammonium acrylamidomethyl propane sulfonate for water treatment,” Journal of Molecular Liquid, Vol. 236, pp. 38–47, 2017. [CrossRef]
  • M. H. Dehghani, A. Dehghan, H. Alidadi, M. Dolatabadi, M. Mehrabpour, and A. Converti, “Removal of methylene blue dye from aqueous solutions by a new chitosan/zeolite composite from shrimp waste: kinetic and equilibrium study,” Korean Journal of Chemical Engineering, Vol 23, pp. 1–9, 2027.
  • M. Yoosefian, S. Ahmadzadeh, M. Aghasi, and M. Dolatabadi, “Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption,” Journal of Molecular Liquids, Vol. 225, pp. 544–553, 2017. [CrossRef]
  • S. Ahmadzadeh, A. Asadipour, M. Yoosefian, and M. Dolatabadi, “Improved electrocoagulation process using chitosan for efficient removal of cefazolin antibiotic from hospital wastewater through sweep flocculation and adsorption; kinetic and isotherm study,” Desalination and Water Treatment, Vol.92, pp.160–171, 2017. [CrossRef]
  • A. Careghini, A. F. Mastorgio, S. Saponaro, and E. Sezenna, “Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review,” Environmental Science and Pollution. Research, Vol. 22, pp. 5711–5741, 2015. [CrossRef]
  • C. Darvishi, R. Soltani, A. Khataee, H. Godini, M. Safari, M. Ghanadzadeh, and M. Rajaei, “Response surface methodological evaluation of the adsorption of textile dye onto biosilica/alginate nanobiocomposite: thermodynamic, kinetic, and isotherm studies,” Desalination and Water Treatment, Vol. 56, pp. 1389–1402, 2015. [CrossRef]
  • A. Panagopoulos, K. J. Haralambous, and M. Loizidou, “Desalination brine disposal methods and treatment technologies - a review,” Science of The Total Environment, Vol. 693, Article 133545, 2019. [CrossRef]
  • A. Hassani, M. Kiranan, R. D. C. Soltani, A. Khataee, and S. Karaca, “Optimization of the adsorption of a textile dye onto nanoclay using a central composite design,” Turkish Journal of Chemistry, Vol. 39, pp. 734–749, 2015. [CrossRef]
  • R. D. C. Soltani, A. J. Jafari, and G. S. Khorramabadi, “Investigation of cadmium (II) ions biosorption onto pretreated dried activated sludge,” American Journal of Environmental Science, Vol. 5, pp. 4152, 2009. G. Chen. Electrochemical technologies in wastewater treatment,” Separation and Purification Technology, Vol. 38, pp. 11–41, 2004. [CrossRef]
  • Y.-J. Liu, Y.-L. Huang, S.-L. Lo, and C.-Y. Hu, “Comparing the effects of types of electrode on the removal of multiple pharmaceuticals from water by electrochemical methods,” Water, Vol. 12, Article 2332, 2020.
  • S. M. Nazmuz, “Electrochemical wastewater treatment,” TechRxiv November 03, 2021. doi: 10.36227/techrxiv.16913476.v1
  • G. Z. Kyzas, and K. A. Matis, “Electroflotation process: A review,” Journal of Molecular Liquids, Vol. 220, pp. 657–664, 2016. [CrossRef]
  • Y. Feng, L. Yang, J. Liu, and B. E. Logan, “Electrochemical technologies for wastewater treatment and resource reclamation,” Environmental Science: Water Research & Technology, Vol. 2(5), pp. 800–831, 2016. [CrossRef]
  • A. G. Khorram, N. Fallah, B. Nasernejad, N. Afsham, M. Esmaelzadeh, and V. Vatanpour, “Electrochemical-based processes for produced water and oily wastewater treatment: A review,” Chemosphere, Vol. 338, Article 139565, 2023. [CrossRef]
  • T. Zheng, J. Wang, Q. Wang, H. Meng, and L. Wang, “Research trends in electrochemical technology for water and wastewater treatment,” Applied Water Science, Vol. 7, pp. 13–30, 2017. [CrossRef]
  • E. T. Amaral, L. B. Bender, T. M. Rizzetti, and R. C. Schneider, “Removal of organic contaminants in water bodies or wastewater by microalgae of the genus chlorella: A review,” Case Studies in Chemical and Environmental Engineering, Vol. 8, Article 100433, 2023. [CrossRef]
  • J. Radjenovic, and D. L. Sedlak, “Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water,” Environmental Science & Technology, Vol. 49(19), pp. 11292–11302, 2015. [CrossRef]
  • C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, and M. Zhou, “Three-dimensional electrochemical process for wastewater treatment: A general review,” Chemical Engineering Journal, Vol. 228, pp. 455–467, 2013. [CrossRef]
  • W. Nabgan, M. Saeed, A. A. Jalil, B. Nabgan, Y. Gambo, M. W. Ali, … and M. Y. Mohamud, “A state of the art review on electrochemical technique for the remediation of pharmaceuticals containing wastewater,” Environmental Research, Vol. 210, Article 11297, 2022. [CrossRef]
  • J. Li, J. Jin, Y. Zhao, Z. Zou, Y. Wu, J. Sun, and J. Xia,” Enhancing phosphorus bioavailability in sewage sludge through co-hydrothermal treatment with biomass,” Journal of Water Process Engineering, Vol. 50, Article 103341, 2023. [CrossRef]
  • M. S. Najafinejad, S. Chianese, A. Fenti, P. Iovino, and D. Musmarra, “Application of electrochemical oxidation for water and wastewater treatment: An overview,” Molecules, Vol 28(10), Article 4208, 2023.
  • G. Gerner, L. Meyer, R. Wanner, T. Keller, and R. Krebs, “Sewage sludge treatment by hydrothermal carbonization: Feasibility study for sustainable nutrient recovery and fuel production,” Energies, Vol 14, Article 2697, 2021. [CrossRef]
  • M. Shestakova, and M. Sillanpää, “Electrode materials used for electrochemical oxidation of organic compounds in wastewater,” Reviews in Environmental Science and Bio/Technology, Vol 16, pp. 223–238, 2017. [CrossRef]
  • S. W. da Silva, J. B. Welter, and L. L. Albornoz, “Advanced electrochemical oxidation processes in the treatment of pharmaceutical containing water and wastewater: A review,” Current Pollution Reports, Vol. 7, pp. 146–159, 2021. [CrossRef]
  • J. Sun, L. Liu, and F. Yang, “Electro-enhanced chlorine-mediated ammonium nitrogen removal triggered by an optimized catalytic anode for sustainable saline wastewater treatment,” Science of The Total Environment, Vol 776, Article 146035, 2021. [CrossRef]
  • G. H. Tran, T. K. Tran, H.-J. Leu, D. Richards, and S.-S. Lo, “An integrated system combining electrochemical oxidation and filtration processes to remove chlorine from pharmaceutical industry wastewater,” Arabian Journal of Chemistry, Vol. 17(3), Article 105611, 2024. [CrossRef]
  • R. Alam, S. U. Khan, M. Usman, M. Asif, and I. H. Farooqi, “A critical review on treatment of saline wastewater with emphasis on electrochemical based approaches,” Process Safety and Environmental Protection, Vol. 158, pp. 625643, 2022. [CrossRef]
  • A. Abbas, M. Al-Raad, M. Hanafiah, S. M. Ahmed, S. Mohammed, and A. Ajeel, “Optimized parameters of the electrocoagulation process using a novel reactor with a rotating anode for saline water treatment,” Environmental Pollution, Vol. 265, Article 115049, 2019. [CrossRef]
  • H Kaya, “A research on electrode applications: synthesis of nickel-doped graphene oxide,” International Journal of Pure and Applied Sciences, Vol. 10(1), pp. 3746, 2024. [CrossRef]
  • O Görmez, and A. Gizir, “Subcritical water oxidation of diethyl phthalate using H2O2 and K2S2O8 as oxidizing agents: application of Box-Behnken design,” International Journal of Pure and Applied Sciences, Vol. 10(1), pp. 290302, 2024. [CrossRef]
  • M. Arienzo, P. Adamo, J. Chiarenzelli, M. R. Bianco, and A. De Martino, “Retention of arsenic on hydrous ferric oxides generated by electrochemical peroxidation,” Chemosphere Vol. 48, pp. 1009–1018, 2002. [CrossRef]
  • A. Al-Raad, A. Hanafiah, M. M. Naje, A. S. Ajeel, M. A. O. Basheer, A. Ali Aljayashi, T. Ekhwan, and M. Toriman, “Treatment of saline water using electrocoagulation with combined electrical connection of electrodes,” Processes, Vol. 7(5), Article 242, 2019. [CrossRef]
  • F. Y. AlJaberi, S. A. Ahmed, and H. F. Makki, “Electrocoagulation treatment of high saline oily wastewater: evaluation and optimization,” Heliyon, Vol. 6(6), Article e03988, 2020. [CrossRef]
  • Y. Yavuz, and U. Ögütveren, “Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes,” Journal of Environmental. Management, Vol. 207, pp. 151–158, 2018. [CrossRef]
  • S. T. McBeath, M, Mohseni, and D. P.Wilkinson, “Pilot-scale iron electrocoagulation treatment for natural organic matter removal,” Environmental Technology, pp.1–9, 2018. [CrossRef]
  • S. Müller, T. Behrends, and C. M. van Genuchten, “Sustaining efficient production of aqueous iron during repeated operation of Fe (0)-electrocoagulation,” Water Resources, Vol. 155, pp. 455–464, 2019. [CrossRef]
  • K. S. Hashim, R. AlKhaddar, A. Shaw, P. Kot, D. Al-Jumeily, R. Alwash, and M. H. Aljefery, “Electrocoagulation as an eco-friendly River water treatment method. In: Advances in Water Resources Engineering and Management,” Springer, pp. 219–235, 2020. [CrossRef]
  • K. Mehmet, D. Reza, S, Cheshmeh, I. O. Philip, and K. A. Alireza, “A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms,” Environmental Technology and Innovation, Vol. 17, Article 100519, 2020. [CrossRef]
  • K. S. Hashim, R. Al Khaddar, N. Jasim, A. Shaw, D. Phipps, P. Kot, … and R. Alawsh, “Electrocoagulation as a green technology for phosphate removal from River water,” Separation Purification and Technology, Vol. 210, pp. 135–144, 2019a. [CrossRef]
  • M. A. Hashim, A. Kundu, S. Mukherjee, Y. S. Ng, S. Mukhopadhyay, G. Redzwan, and B. S. Gupta, “Arsenic removal by adsorption on activated carbon in a rotating packed bed,” Journal of Water Process Engineering, Vol. 30, Article 100591, 2019b. [CrossRef]
  • S. D. U Islam, “Electrocoagulation (EC) technology for wastewater treatment and pollutants removal,” Sustainable Water Resources Management, Vol. 5, pp. 359–380, 2019. [CrossRef]
  • J. A. Gomes, P. Daida, M. Kesmez, M. Weir, H. Moreno, J. R. Parga, and E. Peterson, “Arsenic removal by electrocoagulation using combined Al–Fe electrode system and characterization of products,” Journal of Hazardous Materials, Vol. 139, pp. 220–231, 2007. [CrossRef]
  • V. Gilhotra, L. Das, A. Sharma, T. S. Kang, P. Singh, R. S. Dhuria, and M. S. Bhatti, “Electrocoagulation technology for high strength arsenic wastewater: process optimization and mechanistic study,” Journal of Cleaner Production, Vol. 198, pp. 693–703, 2018. [CrossRef]
  • M. López-Guzmán, M. Alarcón-Herrera, J. Irigoyen-Campuzano, L. Torres-Castañón, and L. Reynoso-Cuevas, “Simultaneous removal of fluoride and arsenic from well water by electrocoagulation, Science of the Total Environment, Vol. 678, pp. 181–187, 2019a. [CrossRef]
  • H. N. Kim, and J. H. Park, Simultaneous removal of arsenic and lead by iron phosphate and its potential for immobilization in mixed-contaminated soil, Frontiers in Environmental Science, Vol. 12, Article 1358561, 2024. [CrossRef]
  • P. Song, Q. Song, Z. Yang, G. Zeng, H. Xu, X. Li, and W. Xiong, “Numerical simulation and exploration of electrocoagulation process for arsenic and antimony removal: Electric field, flow field, and mass transfer studies,” Journal of Environmental Management, Vol. 228, pp. 336–345, 2018. [CrossRef]
  • S. Ghosh, A. Debsarkar, and A. Dutta, “Technology alternatives for decontamination of arsenic-rich groundwater—A critical review,” Environmental Technology and Innovation, Vol 13, pp. 277–303, 2019. [CrossRef]
  • I. A. Oke, S. Lukman, T. A. Aladesanmi, E. O. Fehintola, S. J. Amoko, and O. O. Hammed, “Chapter 8 Electrochemical Treatment of Wastewater: An Emerging Technology for Emerging Pollutants in Effects of Emerging Chemical Contaminants on Water Resources and Environmental Health,” In V. Shikuku, (Ed.), United States of America by IGI Global, pp. 133–157, 2020. [CrossRef]
  • A. Ali, I. A. Shaikh, S. R. Ahmad, M. B. Shakoor, J.W.H. Yong, M. Rizwan, and F. Samina, “Application of effluent reduction methods and treatment using advanced oxidation process at leather chemicals and tanning industries,” Frontiers in Environmental Science, Vol. 12, Article 1422107, 2024. [CrossRef]
  • H.K. Hansen, P. Nunez, D., Raboy, I., Schippacasse, and R. Grandon, “Electrocoagulation in wastewater containing arsenic: Comparing different process designs,” Electrochemical Acta Vol. 52, pp. 3464–3470, 2007. [CrossRef]
  • N. Balasubramanian, T. Kojima, and C. Srinivasakannan, “Arsenic removal through electrocoagulation: kinetic and statistical modelling,” Chemical Engineering Journal, Vol. 155, pp. 76–82, 2009. [CrossRef]
  • P. Lakshmipathiraj, S. Prabhakar, and G. B. Raju, “Studies on the electrochemical decontamination of wastewater containing arsenic,” Separation Purification and Technology, Vol.73, pp. 114–121, 2010a. [CrossRef]
  • D. Lakshmanan, D. A. Clifford, and G. Samanta, “Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation,” Water Resources, Vol.44, pp. 5641–5652, 2010b. [CrossRef]
  • I. Ali, V. K. Gupta, T. A. Khan, and M. Asim, “Removal of arsenate from aqueous solution by electro-coagulation method using Al-Fe electrodes,” International. Journal of Electrochemical. Science. Vol. 7, pp. 1898–1907, 2012. [CrossRef]
  • R. Daniel, and R. A. Prabhakara, “An efficient removal of arsenic from industrial effluents using electro-coagulation as clean technology option,” International. Journal of Environmental Research, Vol. 6, pp. 711–718, 2012.
  • S. Amrose, A. Gadgil, V. Srinivasan, K. Kowolik, M. Muller, J. Huang, and R. Kostecki, “Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate” Journal of Environmental Science Health A, Vol. 48, pp. 1019–1030, 2013. [CrossRef]
  • S. E. Amrose, S. R. Bandaru, C. Delaire, C. M. van Genuchten, A. Dutta, A. DebSarkar, … and A. J. Gadgil, “Electro-chemical arsenic remediation: field trials in West Bengal,” Science of Total Environment. Vol. 488, pp. 539–546, 2014. [CrossRef]
  • O. J. Flores, J. L. Nava, G. Carreño, E. Elorza, and F. Martínez, “Arsenic removal from groundwater by electrocoagulation in a pre-pilot-scale continuous filter press reactor,” Chemical Engineering Science, Vol. 97, pp. 1–6, 2013. [CrossRef]
  • A. García-Lara, and C. Montero-Ocampo, “Improvement of arsenic electro-removal from underground water by lowering the interference of other ions,” Water Air Soil Pollution, Vol. 205, pp. 237243, 2010. [CrossRef]
  • A. García-Lara, C. Montero-Ocampo, and F. Martínez-Villafañe, “An empirical model for treatment of arsenic contaminated underground water by electrocoagulation process employing a bipolar cell configuration with continuous flow,” Water Science and Technology, Vol. 60, pp. 2153–2160, 2009. [CrossRef]
  • R. Alcacio, J. L. Nava, G. Carreño, E. Elorza, and F. Martínez, “Removal of arsenic from a deep well by electrocoagulation in a continuous filter press reactor,” Water Science and Technology: Water Supply, Vol. 14, pp. 189–195, 2014. [CrossRef]
  • B. Z. Can, R. Boncukcuoglu, A. E. Yilmaz, and B. A. Fil, “Effect of some operational parameters on the arsenic removal by electrocoagulation using iron electrodes,” Journal of Environmental Health Science and Engineering, Vol. 12, pp. 9598, 2014. [CrossRef]
  • W. Bouguerra, A. Barhoumi, N. Ibrahim, K. Brahmi, L. Aloui, and B. Hamrouni, “Optimization of the electrocoagulation process for the removal of lead from water using aluminium as electrode material,” Desalination Water Treatment, Vol. 56, pp. 2672–2681, 2015. [CrossRef]
  • B. Deng, “A bio-inspired membrane for arsenic removal,” Nature Water, Vol. 2, pp 310–311, 2024. [CrossRef]
  • J. H. Kim, H. A. Maitlo, and J. Y. Park, “Treatment of synthetic arsenate wastewater with iron-air fuel cell electrocoagulation to supply drinking water and electricity in remote areas,” Water Research, Vol. 115, pp. 278–286, 2017. [CrossRef]
  • M. Kobya, A. Akyol, E. Demirbas, and M. Oncel, “Removal of arsenic from drinking water by batch and continuous electrocoagulation processes using hybrid Al-Fe plate electrodes,” Environment. Progress Sustainable Energy, Vol. 33, pp.131–140, 2014. [CrossRef]
  • M. Kobya, E, Demirbas, U. Gebologlu, M. Oncel, and Y. Yildirim, “Optimization of arsenic removal from drinking water by electrocoagulation batch process using response surface methodology,” Desalination Water Treatment Vol. 51, pp. 6676–6687, 2013. [CrossRef]
  • M. Kobya, E. Demirbas, and F. Ulu, “Evaluation of operating parameters with respect to charge loading on the removal efficiency of arsenic from potable water by electrocoagulation,” Journal of Environmental Chemical Engineering, Vol.4, pp. 1484–1494, 2016. [CrossRef]
  • M. Kobya, U. Gebologlu, F. Ulu, S. Oncel, and E. Demirbas, “Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes,” Electrochemical Acta, Vol. 56, pp. 5060–5070, 2011a. [CrossRef]
  • M. Kobya, M. Oncel, E. Demirbas, and M. Celen, “Arsenic and boron removal from spring and groundwater samples in boron mining regions of Turkey by electrocoagulation and ion-exchange consecutive processes,” Desalination Water Treatment, Vol. 93, pp. 288–296, 2017. [CrossRef]
  • M. Kobya, F. Ozyonar, E. Demirbas, E. Sik, and M. Oncel, “Arsenic removal from groundwater of Sivas-Şarkişla Plain, Turkey by electrocoagulation process: comparing with iron plate and ball electrodes,” Journal of Environmental Chemical Engineering, Vol. 3, pp. 1096–1106, 2015. [CrossRef]
  • M. Kobya, E. Sik, E. Demirbas, A.Y. Goren, and M. S. Oncel, “Optimization of some cations for removal of arsenic from groundwater by electrocoagulation process,” Environmental Engineering Management Journal, Vol. 17, pp. 2333, 2018. [CrossRef]
  • M. Kobya, F. Ulu, U. Gebologlu, E. Demirbas, and M. S. Oncel, “Treatment of potable water containing low concentration of arsenic with electrocoagulation: Different connection modes and Fe–Al electrodes,” Separation Purification and Technology, Vol. 77, pp. 283–293, 2011b. [CrossRef]
  • P. T. Binh, N. T. Van Anh, M. T. T. Thuy, and M. T. Xuan, “Effect of potential on arsenic treatment using technology of electrocoagulation,” Vietnam Journal of Chemistry, Vol. 56, pp. 478–482, 2018. [CrossRef]
  • A. Gören, M. Öncel, E. Demirbas, E. Şık, and M. Kobya, “Removal of arsenate by electrocoagulation reactor using aluminum ball anode electrodes,” Water Practices Technology, Vol. 13, pp. 753–763, 2018. [CrossRef]
  • T. G. Kazi, K. D. Brahman, J. A, Baig, and H. I. Afridi, “A new efficient indigenous material for simultaneous removal of fluoride and inorganic arsenic species from groundwater,” Journal of Hazardous Materials, Vol. 357, pp. 159167, 2018. [CrossRef]
  • E. Demirbas, M. Kobya, M. S. Oncel, E. Şık, and A.Y. Goren, “Arsenite removal from groundwater in a batch electrocoagulation process: Optimization through response surface methodology,” Separation Science and Technology, Vol 54, pp. 775–785, 2019. [CrossRef]
  • M. Rosales, O. Coreño, and J. L. Nava, “Removal of hydrated silica, fluoride and arsenic from groundwater by electrocoagulation using a continuous reactor with a twelve-cell stack,” Chemosphere Vol. 211, pp. 149–155, 2018. [CrossRef]
  • F. Younas, A. Mustafa, Z. U. R. Farooqi, X. Wang, S. Younas, W. Mohy-Ud-Din, … and M. M. Hussain, “Current and emerging adsorbent technologies for wastewater treatment: trends, limitations, and environmental implications,” Water, Vol. 13, Article 215, 2021. [CrossRef]
  • O. A. Obijole, S. T, Ogungbemi E. A, Adekunbi, B. S. Sani, M. D, Idi, and I. A. Oke, “Electrochemical treatment of water as an effective and emerging technology,” IGI Global, 2022. [CrossRef]
  • E. A. Adekunbi, J. O. Babajide, H. O. Oloyede, J. S. Amoko, O. A. Obijole, and I. A. Oke, “Evaluation of microsoft excel solver as a tool for adsorption kinetics determination,” Ife Journal of Science, Vol. 21(3), pp. 169–183, 2019. [CrossRef]
  • E. A. Adekunbi, O. A. Obijole, J. O. Babajide, B. M. Ojo, O. K. Olayanju, K. A. Bolorunduro, and I. A. Oke, “Mechanism and activation energy of arsenic removal from aqueous solutions,” Algerian Journal of Research and Technology, Vol. 7(1), pp. 4665, 2023. [CrossRef]
  • P. I. Omwene, M. Kobya, and O. T. Can, “Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes,” Ecology Engineering, Vol. 123, pp. 65–73, 2018. [CrossRef]
  • P. I. Omwene, M. Çelen, M. S. Öncel, and M. Kobya, “Arsenic removal from naturally arsenic contaminated ground water by packed-bed electrocoagulator using Al and Fe scrap anodes,” Process Separation and Environmental Protection, Vol. 121, pp. 20–31, 2019. [CrossRef]
  • P. I. Omwene, and M. Kobya, “Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: a comparative study,” Process. Separation and Environmental Protection, Vol. 116, pp. 34–51, 2018. [CrossRef]
  • N. S. Graça, A. M. Ribeiro, and A. E. Rodrigues, “Modeling the electrocoagulation process for the treatment of contaminated water,” Chemical Engineering Science, Vol. 197, pp. 379–385, 2019. [CrossRef]
  • E. A. Adekunbi, M. A. Asani, S. Lukman, B. S. Sani, T. S. Ogungbemi, B. M. Ojo, and I. A. Oke, “Fates and selected recent treatment techniques of emerging pollutants: A narrative review,” Science Forum Journal of Pure and Applied Sciences, Vol. 22, pp. 648–669, 2022.
  • M. S. Islam, M. T. Islam, Z. Ismail, A. R. M. T, Islam, R. Khan, F. Hasan, … and A. M. Idris, “Assessment of trace elements in the long-term banana cultivation field’s soil,” Frontier Environmental Science, Vol. 11, Article 1272840, 2023. [CrossRef]
  • S. G. Tewari, J. P. Bell, N. Budgen, S. Platz, M. Gibbs, P. Newham, and H. Kimko, “Pressurized metered-dose inhalers using next-generation propellant HFO-1234ze(E) deposit negligible amounts of trifiuoracetic acid in the environment,” Frontier Environmental Science, Vol. 11, Article 1297920, 2023. [CrossRef]
  • J. J. Halama, R. B. McKane, B. L. Barnhart, P. P. Pettus, A. F. Brookes, A. K. Adams, … and E. P. Kolodziej, “Watershed analysis of urban stormwater contaminant 6PPD-Quinone hotspots and stream concentrations using a process-based ecohydrological model,” Frontier Environmental Science Vol. 12 , Article 1364673, 2024. [CrossRef]
  • P. Pérez-Rodríguez, and Y. Alhaj Hamoud, “Editorial: The restoration of degraded soils: amendments and remediation,” Frontier Environmental Science, Vol. 12, Article 1390795, 2024. [CrossRef]
  • S. Aziz, S. Anbreen I. Iftikhar, T. Fatima, A. Iftikhar, and L. Ali, “Green technology: synthesis of iron-modified biochar derived from pine cones to remove azithromycin and ciprofioxacin from water,” Frontier Environmental Science, Vol. 12, Article 1353267, 2024. [CrossRef]
  • S. J. C Galgo, R. C. Canatoy, J. Y. Lim, H. C. Park and P. J. Kim, “A potential of iron slag-based soil amendment as a suppressor of greenhouse gas (CH4 and N2O) emissions in rice paddy,” Frontier Environmental Science, Vol. 12, Article 1290969, 2024. [CrossRef]
  • A. A. Al-Raad, and M. M. Hanafiah, “Sulfate (SO42−) removal by electrocoagulation process under combined electrical connection of electrodes,” IOP Conference Series: Earth and Environmental Science, Vol. 880, Article 012033, 2021. [CrossRef]
  • A. A. Al-Raad, M. M. Hanafiah, A. S. Naje, and M. A. Ajeel, “Optimized parameters of the electrocoagulation process using a novel reactor with rotating anode for saline water treatment,” Environmental Pollution, Vol. 265, Part B Article 115049, 2020, [CrossRef]
  • D. J. Ahirrao, S. Tambat, A. B. Pandit, and N. Jha, “Sweet-lime-peels-derived activated-carbon-based electrode for highly efficient supercapacitor and flow-through water desalination,” Chemistry Select, Vol. 4(9), pp. 2610–2625, 2019. [CrossRef]
  • M. A. Ahmed, and S. Tewari, “Capacitive deionization: Processes, materials and state of the technology,” Journal of Electroanalytical Chemistry, Vol. 813, pp. 178–192, 2018. [CrossRef]
  • J. S. Al-Marri, A. B. Abouedwan, M. I. Ahmad, and N. Bensalah, “Electrocoagulation using aluminum electrodes as a sustainable and economic method for the removal of kinetic hydrate inhibitor (polyvinyl pyrrolidone) from produced wastewaters,” Frontiers in Water, Vol. 5, Article 1305347, 2023. [CrossRef]
  • F. A. AlMarzooqi A. A, Al Ghaferi I. Saadat, and N, Hilal, “Application of capacitive deionisation in water desalination: A review,” Desalination, Vol. 342, pp. 3–15, 2014. [CrossRef]
  • A. T. Angeles, and J. Lee, “Carbon‐based capacitive deionization electrodes: development techniques and its influence on electrode properties,” The Chemical Record, Vol. 21(4), pp. 820840, 2021.
  • K. Y. Chen, Y. Y. Shen, D. M. Wang, and C. H. Hou, “Carbon nanotubes/activated carbon hybrid as a high-performance suspension electrode for the electrochemical desalination of wastewater,” Desalination, Vol. 522, Article 115440, 2022. [CrossRef]
  • F. Duan, Y. Li, H. Cao, Y. Wang, J. C. Crittenden, and Y. Zhang, “Activated carbon electrodes: electrochemical oxidation couple with desalination for wastewater treatment,” Chemosphere, Vol. 125, pp. 205211, 2015. [CrossRef]
  • S. Dutta S. Y. Huang C. Chen J. E. Chen, Z. A. Alothman, Y. Yamauchi, C.H. Hou, and K. C. W. Wu, “Cellulose framework directed construction of hierarchically porous carbons offering high-performance capacitive deionization of brackish water,” ACS Sustainable Chemistry & Engineering, Vol. 4(4), pp. 18851893, 2016. [CrossRef]
  • M. Ebba, P. Asaithambi, and E. Alemayehu, “Development of electrocoagulation process for wastewater treatment: optimization by response surface methodology,” Heliyon, Vol. 8(5), Article 09383, 2022. [CrossRef]
  • S. Garcia-Segura, M. M. S. Eiband, J. V. de Melo, and C. A. Martínez-Huitle, “Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals,” emerging applications and its association with other technologies, Journal of Electroanalytical Chemistry, Vol. 801, pp. 267–299, 2017. [CrossRef]
  • U. Ghimire, M. K. Heili, and V. G. Gude, “Electrochemical desalination coupled with energy recovery and storage,” Desalination, Vol. 503, Article 114929, 2021. [CrossRef]
  • G. Greco, D. Tatchev, A. Hoell, M. Krumrey, S. Raoux, R. Hahn, and G. A. Elia, “Influence of the electrode nano/microstructure on the electrochemical properties of graphite in aluminum batteries,” Journal of Materials Chemistry A, Vol. 6(45), pp. 2267322680, 2018. [CrossRef]
  • J. Gustafsson, P. Mikkola, M. Jokinen, and J. B. Rosenholm, “The influence of pH and NaCl on the zeta potential and rheology of anatase dispersions,” Colloids and Surfaces A Physicochemical and Engineering Aspects, Vol. 175(3), pp. 349–359, 2000. [CrossRef]
  • D. Hossein, A. H. Hasheminejad, and D. J. Lampert, “Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction,” Frontiers of Environmental Science & Engineering, Vol. 14(6), pp. 99, 2020. [CrossRef]
  • M. Hosseinzadeh, S. A. Mozaffari, and F. Ebrahimi, “Porous 3D-graphene functionalized with MnO2 nanospheres and NiO nanoparticles as highly efficient electrodes for asymmetric capacitive deionization: Evaluation by impedance-derived capacitance spectroscopy,” Electrochimica Acta, Vol. 427, Article 140844, 2022. [CrossRef]
  • C. P. Hsu, Z. B. Pan, and H. P. Lin, “Synthesis of Multiporous Carbons with Biomaterials for Applications in Supercapacitors and Capacitive Deionization,” In Energy Storage and Conversion Materials, (pp. 201222). CRC Press, 2023. [CrossRef]
  • G. Khajouei, S. Mortazavian, A. Saber, M. N. Zamani, and H. Hasheminejad, “Treatment of composting leachate using electro-Fenton process with scrap iron plates as electrodes,” International Journal of Environmental Science and Technology, Vol. 16(8), pp 4133–4142, 2019. [CrossRef]
  • Y. J. Kim, and J. H. Choi, “Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer,” Water Research, Vol. 44(3), pp. 990996, 2010. [CrossRef]
  • K. N. Knust, D. Hlushkou, U. Tallarek, and R. M. Crooks, “Electrochemical desalination for a sustainable water future,” ChemElectroChem, Vol. 1(5), pp. 850–857, 2014. [CrossRef]
  • K. Laxman, M. T. Z, Myint, M. Al Abri, P. Sathe, S. Dobretsov, and J. Dutta, “Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes,” Desalination, Vol. 362, pp. 126–132, 2015. [CrossRef]
  • W. B. Li, S. Y. Lin, T. D. H. Nguyen, H. C. Chung, N. T. T. Tran, N. Thi Han, and M. F. Lin, “Diversified phenomena in sodium-, potassium-and magnesium-related graphite intercalation compounds,” In First-Principles Calculations for Cathode, Electrolyte and Anode Battery Materials (pp. 11-1). Bristol, UK: IOP Publishing, 2021.
  • J. A. Lim, N. S. Park, J.-S. Park, and J. H. Choi, “Fabrication and characterization of a porous carbon electrode for desalination of brackish water,” Desalination, Vol. 238(1-3), pp. 37–42, 2009. [CrossRef]
  • D. Liu, K. Huang, L. Xie, and H. L. Tang, “Relation between operating parameters and desalination performance of capacitive deionization with activated carbon electrodes,” Environmental Science Water Research & Technology, Vol.1(4), pp. 516–522, 2015. [CrossRef]
  • P. Liu, T. Yan, L. Shi, H. S. Park, X. Chen, Z. Zhao, and D. Zhang, “Graphene-based materials for capacitive deionization,” Journal of Materials Chemistry A Materials for Energy and Sustainability, Vol. 5(27), pp. 13907–13943, 2017a. [CrossRef]
  • P. Liu, T. Yan, J. Zhang, L. Shi, and D. Zhang, “Separation and recovery of heavy metal ions and salt ions from wastewater by 3D graphene-based asymmetric electrodes via capacitive deionization,” Journal of Materials Chemistry A Materials for Energy and Sustainability, Vol. 5(28), pp. 14748–14757, 2017b. [CrossRef]
  • Y. Liu, K. Wang, X. Xu, K. Eid, A. M. Abdullah, L. Pan, and Y. Yamauchi, “Recent advances in faradic electrochemical deionization: system architectures versus electrode materials,” ACS Nano, Vol.15(9), pp 1392413942, 2021. [CrossRef]
  • M. A. Luciano, H. Ribeiro, G. E. Bruch, and G. G. Silva, “Efficiency of capacitive deionization using carbon materials based electrodes for water desalination,” Journal of Electroanalytical Chemistry, Article 113840, 2020. [CrossRef]
  • Y. Luciano, Y. Zhao, and S. Cotterill, “Examining current and future applications of electrocoagulation in wastewater treatment,” Water, Vol. 15(8), Article 1455, 2023. [CrossRef]
  • M. McKague, “Capacitive Storage of Ions Modelled in a Pore Network using Electrical Double Layer Theories: Helmholtz, Gouy-Chapman-Stern, and modified Donnan,” [Master's thesis], University of Waterloo, 2021.
  • K. Meiramkulova, D. Devrishov, N. Marzanov, S. Marzanova, A. Kydyrbekova, T. Uryumtseva, and T. Mkilima, “Performance of graphite and titanium as cathode electrode materials on poultry slaughterhouse wastewater treatment,” Materials, Vol.13(20), pp. 44894496, 2020. [CrossRef]
  • A. Guzmán, J. L. Nava, O. Coreño, I. Rodríguez, and S. Gutiérrez, “Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor,” Chemosphere, Vol. 144, pp. 2113–2120, 2016. [CrossRef]
  • B. Merzouk, K. Madani, and A. Sekki, “Using electrocoagulation–electroflotation technology to treat synthetic solution and textile wastewater, two case studies,” Desalination, Vol. 250, pp. 573–577, 2010.
  • M. Torkamanzadeh, C. Kök, P. Rolf Burger, J. Lee, C. Kim, and V. Presser, “Best practice for electrochemical water desalination data generation and analysis,” Cell Press Phsyical Science, Vol. 4, Article101661, 2023. [CrossRef]
  • L. O Paulista, P. H. Presumido, and J. D. P Theodoro, “Efficiency analysis of the electrocoagulation and electroflotation treatment of poultry slaughterhouse wastewater using aluminum and graphite anodes,” Environmental and Science Pollution Research, Vol. 25, pp. 19790–19800, 2018. [CrossRef]
  • R. W. Pekala, J. C. Farmer, C. T. Alviso, T. D. Tran, S. T. Mayer, J. M. Miller, and B. Dunn, “Carbon aerogels for electrochemical applications,” Journal of Non-Crystalline Solids, Vol. 225, pp 74–80, 1998. [CrossRef]
  • R.J. Chia, W. J., Lau, N., Yusof, H., Shokravi, and A. F. Ismail, “Adsorptive Membranes for Arsenic Removal – Principles, Progress and Challenges,” Separation & Purification Reviews, Vol. 52(4), pp. 379–399, 2022. [CrossRef]
  • S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, and P. M. Biesheuvel, “Water desalination using capacitive deionization with microporous carbon electrodes,” ACS Applied Materials & Interfaces, Vol.4(3), pp. 1194–1199, 2012. [CrossRef]
  • N. Pugazhenthiran, S. Sen Gupta, A. Prabhath, M. Manikandan, J. R. Swathy, V. K. Raman, and Pradeep, “Cellulose derived graphenic fibers for capacitive desalination of brackish water,” ACS Applied Materials & Interfaces, Vol. 7(36), pp. 2015620163, 2015. [CrossRef]
  • Y. Qi, W. Peng, Y. Li, F. Zhang, and X. Fan, “Recent Advances in Covalent Organic Frameworks for Capacitive Deionization: A Review,” Electrochimica Acta, Vol. 479, Article 143870, 2024. [CrossRef]
  • K. Ramalingam, Y. Zhu, J. Wang, M. Liang, Q. Wei, X. Chen, and F. Chen, “Efficient PEDOT electrode architecture for continuous redox-flow desalination,” ACS Sustainable Chemistry & Engineering, Vol. 9(38), pp. 1277912787, 2021. [CrossRef]
  • E. Raymundo‐Piñero F, Leroux, and F, Béguin, “A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer,” Advanced Materials, Vol. 18(14), pp. 1877–1882, 2006. [CrossRef]
  • M. W. Ryoo, and G. Seo, “Improvement in capacitive deionization function of activated carbon cloth by titania modification,” Water Research, Vol. 37(7), pp. 1527–1534, 2003. [CrossRef]
  • S. Porada, B. B. Sales, H. V. M. Hamelers, and P. M. Biesheuvel, “Water desalination with wires,” Journal of Physical Chemistry Letters, Vol. 3, pp. 16131618, 2012. [CrossRef]
  • J. Saha, and S. K. Gupta, “A novel electro-chlorinator using low cost graphite electrode for drinking water disinfection,” Ionics, Vol. 23, pp. 19031913, 2017. [CrossRef]
  • G. Sayiner, F. Kandemirli, and A. Dimoglo, “Evaluation of boron removal by electrocoagulation using iron and aluminum electrodes,” Desalination, Vol. 230(1-3), pp. 205212, 2017. [CrossRef]
  • K. Tang, S. Yiacoumi, Y. Li, and C. Tsouris, “Enhanced water desalination by increasing the electroconductivity of carbon powders for high-performance flow-electrode capacitive deionization,” ACS Sustainable Chemistry & Engineering, Vol. 7(1), pp. 10851094, 2018. [CrossRef]
  • V. Somashekar, A. Vivek Anand, V. Hariprasad, E. M. Elsehly, and M. Kapulu, “Advancements in saline water treatment: a review,” Water Reuse, Vol. 13(3), pp. 475–491, 2023. [CrossRef]
  • V. Pothanamkandathil, J. Fortunato, and C. A. Gorski, “Electrochemical desalination using intercalating electrode materials: A comparison of energy demands,” Environmental Science & Technology, Vol. 54(6), pp. 36533662, 2020. [CrossRef]
  • M. Wang, X. Xu, J. Tang, S. A. Hou, M. S. Hossain, L. Pan, and Y. Yamauchi, “High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches,” Chemical Communications, Vol. 53(78), pp. 10784–10787, 2017a. [CrossRef]
  • Z. Wang, B. Dou, L. Zheng, G. Zhang, Z. Liu, and Z. Hao, “Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material,” Desalination, Vol. 299, pp. 96–102, 2012. [CrossRef]
  • Z. Wang, T. Yan, G. Chen, L. Shi, and D. Zhang, “High salt removal capacity of metal–organic gel derived porous carbon for capacitive deionization,” ACS Sustainable Chemistry & Engineering, Vol. 5(12), pp. 11637–11644, 2017b. [CrossRef]
  • R. Wang, K. Sun, Y. Zhang, C. Qian, and W. Bao, “Dimensional optimization enables high-performance capacitive deionization,” Journal of Materials Chemistry A, Vol. 10(12), pp. 64146441, 2022.
  • W. Wei, J. Xu, W. Chen, L. Mi, and J. Zhang, “A review of sodium chloride-based electrolytes and materials for electrochemical energy technology,” Journal of Materials Chemistry A, Vol. 10(6), pp 26372671, 2022. [CrossRef]
  • W. Xi, J. Jin, Y. Zhang, R. Wang, Y. Gong, B. He, and H. Wang, “Hierarchical MXene/transition metal oxide heterostructures for rechargeable batteries, capacitors, and capacitive deionization,” Nanoscale, Vol. 14(33), pp. 1192311944, 2022. [CrossRef]
  • P. Xu, J. E. Drewes, D. Heil, and G. Wang, “Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology,” Water Research, Vol. 42(10–11), pp. 2605–2617, 2008. [CrossRef]
  • X. Xu, A. E. Allah, C. Wang, H. Tan, A. A. Farghali, M. H. Khedr, … and Y. Yamauchi, “Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination,” Chemical Engineering Journal, Vol. 362, pp. 887–896, 2019. [CrossRef]
  • J. H. Xu, D. E. Turney, A. L. Jadhav, and R. J. Messinger, “Effects of graphite structure and ion transport on the electrochemical properties of rechargeable aluminum–graphite batteries,” ACS Applied Energy Materials, Vol. 2(11), pp. 77997810, 2019. [CrossRef]
  • L. Xu, Y. Mao, Y. Zong, and D. Wu, “Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system,” Water Research, Vol. 190, pp. 116782116787, 2021. [CrossRef]
  • Z. Yang, P. Yang, X. Zhang, H. Yin, F. Yu, and J. Ma, “Two-dimensional hetero-structured TiO2/TiS2 nanosheets for capacitive deionization,” Chemistry of Materials, Vol. 35(5), pp. 20692077, 2023. [CrossRef]
  • A. Yousef, R. M. Abdel Hameed, S. F. Shaikh, A. Abutaleb, M. M. El-Halwany, and A. M Al-Enizi, “Enhanced electro-adsorption desalination performance of graphene by TiC,” Separation and Purification Technology, Vol. 254, Article 117602, 2020.
  • A. Zakharov, A. Tukesheva, S. F. B. Haque, J. Ferraris, A. Zakhidov, T. Tazhibayeva, and V. Pavlenko, “Review of the current state of technology for capacitive deionization of aqueous salt solutions,” Bulletin of the Karaganda University Physics Series, Vol. 111(3), pp 1633, 2023. [CrossRef]
  • B. Zhang, A. Boretti, and S. Castelletto, “Mxene pseudocapacitive electrode material for capacitive deionization,” Chemical Engineering Journal, Vol. 435, Article 134959, 2022. [CrossRef]
  • G. Zhou, W. Li, Z. Wang, X. Wang, S. Li, and D. Zhang, “Electrosorption for organic pollutants removal and desalination by graphite and activated carbon fiber composite electrodes,” International Journal of Environmental Science and Technology, Vol. 12(12), pp. 3735–3744, 2015. [CrossRef]
  • D. Jiang, R. Xu, L. Bai, W. Wu, D. Luo, Z. Li, and X. Xu, “Insights into electrochemical paradigms for lithium extraction: Electrodialysis versus capacitive deionization,” Coordination Chemistry Reviews, Vol. 516, Article 215923, 2024. [CrossRef]
  • P. Asaithambi, M. B. Yesuf, R. Govindarajan, S. Niju, S. Periyasamy, Z. A. Rabba, … and E. Alemayehu, “Combined ozone, photo, and electrocoagulation technologies- An innovative technique for treatment of distillery industrial wastewater,” Environmental Engineering Research, Vol. 29(2), Article 230042, 2024. [CrossRef]
  • L. Zou, L. Li, H. Song, and G. Morris, “Using mesoporous carbon electrodes for brackish water desalination,” Water Research, Vol. 42(8-9), pp. 2340–2348, 2008. [CrossRef]
  • A. Ban, A. Schafer, and H. Wendt, “Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents,” Journal of Applied Electrochemistry, Vol. 28(3), pp. 227236, 1998. [CrossRef]
  • E. Dalampira, and S. A, Nastis, “Mapping Sustainable Development Goals: A network analysis framework,” Sustainable Development, Vol. 2019, pp. 1–10, 2019. [CrossRef]
  • I. A. Oke, “Development and Performance-Testing of electrochemical treatment for selected Industrial Wastewater,” [Unpublished Doctorial Thesis], Department Civil Engineering Obafemi Awolowo University, Ile-Ife, Nigeria, 2007.
  • I. A. Oke, “Orthogonal experiments in the development of carbon –resin for chloride ions removal,” Statistical Methodology, Vol. 6, pp.109–119, 2009. [CrossRef]
  • I. A. Oke, L. E Umoru, O. E. Olorunniwo, F. I. Alo, and M. A. Asani, “Chapter 16: Properties and Structures of Iron Doped Carbon Resin Electrodes for Wastewaters Treatment,” Solid Waste Management and Environmental Remediation. T. Faerber, and J. Herzog, (Eds.), Nova Science Publisher Inc New York. 467 – 484, 2010 [CrossRef]
  • I. A. Oke, L. E. Umoru, and M. O. Ogedengbe, “Properties and stability of a carbon-resin electrode,” Journal of Materials and Design, Vol. 28(7), pp. 22512254, 2007. [CrossRef]
  • I. A. Oke, L. E. Umoru, and M. O. Ogedengbe, “2k Factorial Experiments on Factors That Influence Stability of Carbon Resin Electrodes,” FUTAJEET, Vol. 5(2), pp. 135141, 2007.
  • I. A. Oke, L. E. Umoru, K. T. Oladepo, and M. O. Ogedengbe, “Utilization of Weibull techniques to describe stability distribution of carbon resin electrodes,” Ife Journal of Technology, Vol. 17(1), 3546, 2018.
  • I. A. Oke, L. E. Umoru, and M. O. Ogedengbe, “Utilization of Taguchi Statistical Method In The Development of Carbon Epoxy Electrodes,” Faculty of Science 3-day Conference held between 3rd July and 5th July 2007 at Conference Centre/ Biological Science (BOOC) Lecture Theatres, Obafemi Awolowo University, Ile-Ife, Nigeria, 2007.
  • I. A. Oke, “Influence of carbonization on selected engineering properties of carbon resin electrodes for electrochemical treatment of wastewater,” Canadian Journal of Chemical Engineering, Vol. 87(10), pp. 801–811, 2019. [CrossRef]
  • I. A. Oke, A. O. Obijole, E. A. Adekunbi, J. O. Babajide, M.-D. Idi, and T. O. Aladesanmi, “Thermal property of carbon resin electrodes developed for electrochemical treatment of water and wastewaters,” FUTAJEET, Vol. 15(1), pp. 8497, 2021. [CrossRef]
  • I. A. Oke, and M. O. Ogedengbe, “Development and Properties of Carbon-Epoxy Electrodes,” Faculty of Science 3-day Conference held between 3rd July and 5th July 2007 at Conference Centre/ Biological Science (BOOC) Lecture Theatres, Obafemi Awolowo University, Ile-Ife, Nigeria, 2007.
  • K. O. Olayanju, K. A. Bolorunduro, and I. A. Oke, “Weibull technique for evaluation of swelling: composite graphite resin electrode for electrochemical treatment of gold mining wastewaters,” Materials Science Forum, Vol. 1115(6), pp. 3140, 2024. [CrossRef]
  • I. A. Oke, B. Aremo, D. A. Isadare, O. E. Olorunniwo, S. A. Ayodeji, G. F. Abass, and A. A. Daniyan, “Microstructures of developed composite graphite-resin electrodes,” Materials Sciences and Applications, Vol. 14, pp. 526534, 2023. [CrossRef]
  • I. A. Oke, and M. O. Ogedengbe, “The performance of a locally developed electrolysing equipment,” FUTAJEET, Vol. 5(2), pp. 142146, 2007.
  • I. A. Oke, K. T. Oladepo, and M. O. Ogedengbe, “Utilization of 2k factorial experiments for the determination of factors that influence electrochemical process,” Ife Journal of Technology, Vol. 19(2), pp. 4854, 2007.
  • APHA, “Standard Method for the Examination of Water and Wastewater,” 22nd ed., America Water Works Association and Water Pollution Control Federation, 2012.
  • M. C. M van Loosdrecht, P. H. Nielsen, C. M. Lopez- Vazquez, and D. Brdjanovic, “Experimental Methods in Wastewater Treatment,” 1st ed., International Water Publishing Alliance House, 2016. [CrossRef]
  • E. O. Fehintola E. A. Adekunbi, B. Ojo, J. Awotunde, and I. Oke, “Performance evaluation of a simple electrochemical treatment model for saline wastewaters,” Environmental Research and Technology, Vol.7(2), pp. 160–174, 2024. [CrossRef]
  • A. A. Akindahunsi, F. A. Falade, J. O. Afolayan, and I. A. Oke, “Effects of chloride salt on reinforced concrete structures in Lagos coastal environment,” Journal of Engineering Research, Vol. 14(3), pp. 13 25, 2019.
  • M. S. Thabit, A. H. Hawari, M. H. Ammar, S. Zaidi, G. Zaragoza, and A. Altaee, “Evaluation of forward osmosis as a pretreatment process for multi stage flash seawater desalination,” Desalination, Vol. 461, pp. 22–29, 2019. [CrossRef]
  • N. Melián-Martel, J. J. Sadhwani Alonso, and S. O. Pérez Báez, “Reuse and management of brine in sustainable SWRO desalination plants,” Desalination Water Treatment, Vol. 51(1–3), pp. 560–566, 2013. [CrossRef]
  • N. Lior, and D. Kim, “Quantitative sustainability analysis of water desalination – a didatic example for reverse osmosis,” Desalination, Vol. 431, pp. 157–170, 2018. [CrossRef]
  • S. K. Mishra, and B. Ram, “Steepest Descent Method,” In: Introduction to Unconstrained Optimization with R, Springer, 2021.
  • Y. M. Wu, L. J. Jiang, and W. C. Chew, “Computing highly oscillatory physical optics integral on the polygonal domain by an efficient numerical steepest descent path method,” Journal of Computational Physics, Vol. 236, pp. 408–425, 2013. [CrossRef]
  • G. C. Bento, O. P. Ferreira, and P. R. Oliveira, “Unconstrained steepest descent method for multicriteria optimization on riemannian manifolds,” Journal of Optimization Theory and Applications, Vol. 154(1), pp. 88–107, 2012. [CrossRef]
  • K. Wang, F. Hu, K. Xu, H. Cheng, M. Jiang, R. Feng, and T. Wen, “CASCADE_SCAN: mining signal transduction network from high-throughput data based on steepest descent method,” BMC Bioinformatics, Vol. 12(1), pp. 164, 2011. [CrossRef]
  • J. Y. Bello Cruz, and G. Bouza Allende, “A steepest descent-like method for variable order vector optimization problems,” Journal of Optimization Theory and Applications, Vol.162(2), pp. 371–391, 2013. [CrossRef]
  • E. J. Haug, J. S. Arora, and K. A. Matsui, “A steepest-descent method for optimization of mechanical systems,” Journal of Optimization Theory and Applications, Vol. 19, pp. 401–424, 1976. [CrossRef]
  • G. C. Bento, J. X. Cruz Neto, P. R. Oliveira, and A. Soubeyran, “The self regulation problem as an inexact steepest descent method for multicriteria optimization,” European Journal of Operational Research, Vol. 235(3), pp. 494–502, 2014. [CrossRef]
  • B. K. Körbahti, “Response surface optimization of electrochemical treatment of textile dye wastewater,” Journal of Hazardous Materials, Vol. 145(1-2), pp. 277–286, 2007. [CrossRef]
  • L. H. Szpyrkowicz, G. N. Kelsall, S. Kaul, and M. De Faveri, “Performance of electrochemical reactor for treatment of tannery wastewaters,” Chemical Engineering Science, Vol. 56(4), pp. 1579–1586, 2001. [CrossRef]
  • Y. Deng, N. Chen, C. Feng, F. Chen, H. Liu, and Z. Chen, “Enhancing electrochemical treatment of nitrogen-containing organic wastewater by iron filings: Performance, inhibition of organochlorine by-products accumulation and cost-effectiveness,” Chemical Engineering Journal, Vol. 384, Article 123321, 2019. [CrossRef]
  • Y. N. Tülin, and K. Serdar, “Container washing wastewater treatment by combined electrocoagulation–electrooxidation,” Separation Science and Technology, Vol. 53, pp. 15921603, 2017. [CrossRef]
  • M. Lyvia, “Effect of current density on the efficiency of a membrane electro-bioreactor for removal of micropollutants and phosphorus, and reduction of fouling: A pilot plant case study,” Journal of Environmental Chemical Engineering, Vol. 9(1), Article 104874, 2021. [CrossRef]
  • C. Feng, N. Sugiura, and T. Maekawa, “Performance of Two New Electrochemical Treatment Systems for Wastewaters,” Journal of Environmental Science and Health, Part A, Vol. 39(9), pp. 2533–2543, 2004. [CrossRef]
  • J. Li, and Z. He, “Optimizing the performance of a membrane bio-electrochemical reactor using an anion exchange membrane for wastewater treatment,” Environmental Science: Water Research and Technology, Vol. 1(3), pp. 355–362, 2015. [CrossRef]
  • C. Phalakornkule, B. Karakat, T. Nuyut, and T. Ruttithiwapanich, “Investigation of electrochemical variables and performance of a continuous upflow electrocoagulation process in the treatment of reactive Blue 140,” Water Environment Research, Vol. 82(12), pp. 2325–2332, 2010. [CrossRef]
  • G. Acosta-Santoyo, J. Llanos, A. Raschitor, E. Bustos, P. Cañizares, and M. A. Rodrigo, “Performance of ultrafiltration as a pre-concentration stage for the treatment of oxyfluorfen by electrochemical BDD oxidation,” Separation and Purification Technology, Vol. 237, Article 116366, 2019. [CrossRef]
  • D. Isaac, Q, Tegladza, K. Xu, G. L. Xu, and L. Jun, “Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal,” Process Safety and Environmental Protection, Vol. 146, pp. 169–189, 2021. [CrossRef]
  • S. X. Garcia-Segura, X. Qu, P. J. J. Alvarez, B. P. Chaplin, W. Chen, J. C. Crittenden, … and P. Westerhoff, “Opportunities for Nanotechnology to Enhance Electrochemical Treatment of Pollutants in Potable Water and Industrial Wastewater,” Environmental Science: Nano, Vol. 2020(8), pp. 2178–2194, 2020. [CrossRef]
  • B. M. B. Ensano, L. Borea, V. Naddeo, V. Belgiorno, M. D. G. de Luna, M. Balakrishnan, and F. C. Ballesteros, “Applicability of the electrocoagulation process in treating real municipal wastewater containing pharmaceutical active compounds,” Journal of Hazardous Materials, Vol. 361, pp. 367373, 2019. [CrossRef]
  • J. Meng, W. Nie, K. Zhang, F. Xu, X. Ding, S. Wang, and Y. Qiu, “Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment,” ACS Applied Materials and Interfaces, Vol. 10(16), pp. 13652–13659, 2018. [CrossRef]
  • O. A. Obijole, E. A. Adekunbi, O. J. Babajide, B. S. Sani, M. D. Idi, and I. A. Oke, “A Review of Techniques for Arsenic Removal From Water,” IGI Global, 2022. [CrossRef]
  • M. Darvishmotevalli, A. Zarei, M. Moradnia, M. Noorisepehr, and H. Mohammadi, “Optimization of saline wastewater treatment using electrochemical oxidation process: Prediction by RSM method,” MethodsX, Vol. 6, pp. 11011113, 2019. [CrossRef]
  • A. Mishra, P. Hyunwoong, F. El-Mellouhi, and D. S. Han, “Seawater electrolysis for hydrogen production: Technological advancements and future perspectives,” Fuel, Vol. 361, Article 130636, 2024. [CrossRef]
  • A. J. C. Da Silva, E. V. dos Santos, C. C. de Oliveira Morais, C. A. Martínez-Huitle, and S. S. L. Castro, “Electrochemical treatment of fresh, brine and saline produced water generated by petrochemical industry using Ti/IrO2–Ta2O5 and BDD in flow reactor,” Chemical Engineering Journal, Vol. 233, pp. 4755, 2013. [CrossRef]
  • V. M. Daskalaki, H. Marakas, D. Mantzavinos, A. Katsaounis and P. Gikas, “Use of seawater for the boron-doped diamond electrochemical treatment of diluted vinasse wastewater,” Water Science and Technology, Vol. 68(11), pp. 2344–2350, 2013. [CrossRef]
  • S. Jonnalagadda, “Effluent treatment using electrochemically bleached seawater? oxidative degradation of pollutants,” Talanta, Vol. 64(1), pp. 18–22, 2004. [CrossRef]
  • K. Yanagase, and T. Yoshinaga, “The Production of Hypochlorite by Direct Electrolysis of Sea Water-Influence of Electrode Gap,” Denki Kagaku Oyobi Kogyo Butsuri Kagaku, Vol. 49(5), pp. 274–280, 1981. [CrossRef]
  • K. Meier, “Hydrogen production with sea water electrolysis using Norwegian offshore wind energy potentials,” International Journal of Energy and Environmental Engineering, Vol. 5(2-3), pp. 124135, 2014. [CrossRef]
  • M. M. Gamil, M. Sugimura, A. Nakadomari, T. Senjyu, H. O. R. Howlader, H. Takahashi, and A. M. Hemeida, “Optimal sizing of a real remote Japanese microgrid with sea water electrolysis plant under time-based demand response programs,” Energies, Vol.13(14), pp. 36663679, 2020. [CrossRef]
  • G. Mannina, A. Cosenza, D. Di Trapani, M. Capodici, and G. Viviani, “Membrane bioreactors for treatment of saline wastewater contaminated by hydrocarbons (diesel fuel): An experimental pilot plant case study,” Chemical Engineering Journal, Vol. 291, pp. 269–278, 2016. [CrossRef]
  • X. Zhang, Z. Guo, C. Zhang, and J. Luan, “Exploration and optimization of two-stage vacuum membrane distillation process for the treatment of saline wastewater produced by natural gas exploitation,” Desalination, Vol. 385, pp.117–125, 2016. [CrossRef]
  • S. Tan, Y. Hou, C. Cui, X. Chen, and W. Li, “Real-time monitoring of biofoulants in a membrane bioreactor during saline wastewater treatment for anti-fouling strategies,” Bioresource Technology, Vol. 224, pp. 183–187, 2017. [CrossRef]
  • K. K. Ng, X. Shi, S. L. Ong, C. F. Lin, and H. Y. Ng, “An innovative of aerobic bio-entrapped salt marsh sediment membrane reactor for the treatment of high-saline pharmaceutical wastewater,” Chemical Engineering Journal, Vol. 295, pp. 317–325, 2016. [CrossRef]
  • K. Xiao, H. Liang, S. Chen, B. Yang, J. Zhang, and J. Li, “Enhanced photoelectrocatalytic degradation of bisphenol A and simultaneous production of hydrogen peroxide in saline wastewater treatment,” Chemosphere, Vol. 222, pp. 141–148, 2019. [CrossRef]
  • S. Cataldo, A. Iannì, V. Loddo, E. Mirenda, L. Palmisano, F. Parrino, and D. Piazzese,” Combination of advanced oxidation processes and active carbons adsorption for the treatment of simulated saline wastewater,” Separation and Purification Technology, Vol. 171, pp. 101–111, 2016. [CrossRef]
  • E. Taheri, M. H. Khiadani, M. M. Amin, M. Nikaeen, and A. Hassanzadeh, “Treatment of saline wastewater by a sequencing batch reactor with emphasis on aerobic granule formation,” Bioresource Technology, Vol.111, pp. 21–26, 2012. [CrossRef]
  • S. I. Abou-Elela, M. M. Kamel, and M. E. Fawzy, “Biological treatment of saline wastewater using a salt-tolerant microorganism,” Desalination, Vol. 250(1), pp. 1–5, 2010. [CrossRef]
  • N. P. Dan, C. Visvanathan, and B. Basu, “Comparative evaluation of yeast and bacterial treatment of high salinity wastewater based on biokinetic coefficients,” Bioresource Technology Vol. 87(1), pp. 51–56, 2003. [CrossRef]
  • H. C. Kim, W. J. Choi, A. N. Chae, J. Park, H. J. Kim, and K. G. Song, “Evaluating integrated strategies for robust treatment of high saline piggery wastewater,” Water Research, Vol. 89, pp. 222–231, 2016. [CrossRef]
  • Y. Zhang, M. Kuroda, S. Arai, F. Kato, D. Inoue, and M. Ike, “Biological treatment of selenate-containing saline wastewater by activated sludge under oxygen-limiting conditions,” Water Research, Vol. 154, pp. 327335, 2019. [CrossRef]
  • N. Salmanikhas, M. Tizghadam, and R. A. Mehrabadi, “Treatment of saline municipal wastewater using hybrid growth system,” Journal of Biological Engineering, Vol. 10(1), pp. 1120, 2016. [CrossRef]
  • A. Goyal, and P. Sharma, “A model on the biological treatment of saline wastewater,” International Journal of Biomathematics, Vol. 10(02), pp. 2134, 2017. [CrossRef]
  • A. R. Picos-Benítez, J. D. López-Hincapié, A. U. Chávez-Ramírez, and A. Rodríguez-García, “Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment,” Water Science and Technology, Vol, 75(5-6), pp. 13511361, 2017. [CrossRef]
  • N. C. Nguyen, S. S. Chen, H. T. Nguyen, Y. H. Chen, H. H. Ngo, W. Guo, and Q. H. Le, “Applicability of an integrated moving sponge biocarrier-osmotic membrane bioreactor MD system for saline wastewater treatment using highly salt-tolerant microorganisms,” Separation and Purification Technology, Vol. 198, pp. 93–99, 2018. [CrossRef]
  • P. Maharaja, J. Magthalin C, Mahesh. M, Lakshmi K Sunkapur, S. Swarnalatha, and G. Sekaran “Treatment of tannery saline wastewater by using effective immobilized protease catalyst produced from salt tolerant Enterococcus faecalis,” Journal of Environmental Chemical Engineering, Vol. 5(2), pp. 2042–2055, 2017. [CrossRef]
  • H. Mirbolooki, R. Amirnezhad, and A. R. Pendashteh, “Treatment of high saline textile wastewater by activated sludge microorganisms,” Journal of Applied Research and Technology, Vol.15(2), pp. 167–172, 2017. [CrossRef]
  • M. C. Tomei, D. M. Angelucci, V. Stazi, and A. J. Daugulis, “On the applicability of a hybrid bioreactor operated with polymeric tubing for the biological treatment of saline wastewater,” Science of The Total Environment, Vol. 599600, pp. 1056–1063, 2017. [CrossRef]
  • T. Onodera, K. Syutsubo, M. Hatamoto, N. Nakahara, and T. Yamaguchi, “Evaluation of cation inhibition and adaptation based on microbial activity and community structure in anaerobic wastewater treatment under elevated saline concentration,” Chemical Engineering Journal, Vol. 325, pp. 442–448, 2017. [CrossRef]
  • J. Liu, S. Shi, X. Ji, B. Jiang, L. Xue, M. Li, and L. Tan, “Performance and microbial community dynamics of electricity-assisted sequencing batch reactor (SBR) for treatment of saline petrochemical wastewater,” Environmental Science and Pollution Research, Vol. 24(21), pp.17556–17565, 2017. [CrossRef]
  • K. Xiao, S. Chen, B. Yang, X. Zhao, G. Yu, and C. Zhu, “Simultaneous achievement of refractory pollutant removal and energy production in the saline wastewater treatment,” Chemical Engineering Journal, Vol. 369, pp. 845853, 2019. [CrossRef]
  • B. Kakavandi, and M. Ahmadi, “Efficient treatment of saline recalcitrant petrochemical wastewater using heterogeneous UV-assisted sono-Fenton process,” Ultrasonics Sonochemistry, Vol. 56, pp. 2536, 2019. [CrossRef]
  • M. Jeddi, F. Karray, S. Loukil, N. Mhiri, M. Ben Abdallah, and S. Sayadi, “Anaerobic biological treatment of industrial saline wastewater: Fixed bed Reactor performance and analysis of the microbial community structure and abundance,” Environmental Technology, Vol. 41, pp. 17151725, 2020. [CrossRef]
  • J. Zhang, H. Yuan, Y. Deng, Y. Zha, I. M. Abu-Reesh, Z. He, and C. Yuan, “Life cycle assessment of a microbial desalination cell for sustainable wastewater treatment and saline water desalination,” Journal of Cleaner Production, Vol. 200, pp. 900–910, 2018. [CrossRef]
  • C. C. Yung, and G. Redzwan “Biological treatment of fish processing saline wastewater for reuse as liquid fertilizer,” Sustainability, Vol. 9(7), pp. 10621078, 2017. [CrossRef]
  • M. T. Jamal, and A. Pugazhendi, “Degradation of petroleum hydrocarbons and treatment of refinery wastewater under saline condition by a halophilic bacterial consortium enriched from marine environment (Red Sea), Jeddah, Saudi Arabia,” Biotech, Vol. 8(6), 2018. [CrossRef]
  • A. Shahata, and T. Urase, “Treatment of saline wastewater by thermophilic membrane bioreactor,” Journal of Water and Environment Technology, Vol. 14(2), pp. 76–81, 2016, [CrossRef]
  • Y. Lu, L. Feng, G. Yang, Q. Yang, X. Zhang, and J. Mu, “Intensification and microbial pathways of simultaneous nitrification-denitrification in a sequencing batch biofilm reactor for seawater-based saline wastewater treatment,” Journal of Chemical Technology and Biotechnology, Vol. 93(9), pp. 2766–2773, 2018. [CrossRef]
  • T. Ahmad, C. Guria, and A. Mandal, “Synthesis, characterization and performance studies of mixed-matrix poly(vinyl chloride)-bentonite ultrafiltration membrane for the treatment of saline oily wastewater,” Process Safety and Environmental Protection, Vol. 116, pp. 703–717, 2018. [CrossRef]
  • H. Eom, J. Kim, S. Kim, and S. S. Lee, “Treatment of saline wastewater containing a high concentration of salt using marine bacteria and aerobic granule sludge,” Journal of Environmental Engineering, Vol. 144(5), pp. 1943–1956, 2018. [CrossRef]
  • Z. Huang, Y. Wang, L. Jiang, B. Xu, Y. Wang, H. Zhao, and W. Zhou, “Mechanism and performance of a self-flocculating marine bacterium in saline wastewater treatment,” Chemical Engineering Journal, Vol. 334, pp. 732–740, 2018. [CrossRef]
  • J. M. Paredez, N. Mladenov, M. B. Galkaduwa, G. M. Hettiarachchi, G. J. Kluitenberg, and S. L. Hutchinson, “A soil column study to evaluate treatment of trace elements from saline industrial wastewater,” Water Science and Technology, Vol.76(10), pp. 2698–2708, 2017. [CrossRef]
  • S. Jorfi, S. Pourfadakari, and M. Ahmadi, “Electrokinetic treatment of high saline petrochemical wastewater: Evaluation and scale-up,” Journal of Environmental Management, Vol. 204, pp. 221–229, 2017. [CrossRef]
  • P. Maharaja, M. Mahesh, C. Chitra, D. Kalaivani, R. Srividya, S. Swarnalatha, and G. Sekaran, “Sequential oxic-anoxic bio reactor for the treatment of tannery saline wastewater using halophilic and filamentous bacteria,” Journal of Water Process Engineering, Vol.18, pp. 47–57, 2017. [CrossRef]
  • D. M. Formentini-Schmitt, M. R. Fagundes-Klen, M. T. Veit, S. M. Palácio, D. E. G. Trigueros, R. Bergamasco, and G. A. P. Mateus, “Potential of the Moringa oleifera saline extract for the treatment of dairy wastewater: application of the response surface methodology,” Environmental Technology, Vol. 40(3), pp. 1–40, 2018. [CrossRef]
  • M. H Doltabadi, H. Alidadi, and M. Davoudi, “Comparative study of cationic and anionic dye removal fromaqueous solutions using sawdust-based adsorbent,” Environmental Progression Sustainable and Energy, Vol. 35, pp. 1078–1090, 2016. [CrossRef]
  • M. Ahmadi, H. Saki, A. Takdastan, M. Dinarvand, S. Jorfi, and B. Ramavandi, “Advanced treatment of saline municipal wastewater by Ruppia maritima : A data set,” Data in Brief, Vol. 13, pp. 545–549, 2017. [CrossRef]
  • M. T. Z. Myint, S. H. Al-Harthi, and J. Dutta. “Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes,” Desalination, Vol. 344, pp. 236242, 2014. [CrossRef]
Year 2025, Volume: 8 Issue: 1, 196 - 223, 31.03.2025
https://doi.org/10.35208/ert.1462704

Abstract

Project Number

Not Applicable

References

  • S. Ahmadzadeh, and M. Dolatabadi, “Modeling and kinetics study of electrochemical peroxidation process for mineralization of bisphenol A; a new paradigm for groundwater treatment,” Journal of Molecular Liquids, Vol. 254, pp. 76–82, 2018. [CrossRef]
  • R. Kamaraj, A. Pandiarajan, M. R. Gandhi, A. Shibayama, and S. Vasudevan, “Eco–friendly and easily prepared graphene nanosheets for safe drinking water: removal of chlorophenoxyacetic acid herbicides,” Chemistry Select, Vol. 2, pp. 342–355, 2017. [CrossRef]
  • A. Mojiri, A. P Trzcinski, M. J. K Bashir, and S. S. Abu Amr, “Editorial: Innovative treatment technologies for sustainable water and wastewater management,” Frontiers in Water, Vol. 6, Article 1388387, 2024. [CrossRef]
  • M. Topal, E. I. Arslan Topal, and E. Öbek, “Potential human health risk from toxic/carcinogenic arsenic in ripe and unripe tomatoes grown in wastewater exposed zone,” International Journal of Pure and Applied Sciences, Vol. 10(1), pp. 8999, 2024. [CrossRef]
  • M. Khan, and I. M. Lo, “Removal of ionizable aromatic pollutants from contaminated water using nano γ-Fe2 O3 based magnetic cationic hydrogel: sorptive performance, magnetic separation and reusability,” Journal of Hazardous. Materials, Vol. 322, pp 195–204, 2017. [CrossRef]
  • C. Majumder, and A. Gupta, “Prediction of arsenic removal by electrocoagulation: Model development by factorial design,” Journal of Hazardous Toxic and Radioactive Waste, Vol. 15, pp 48–54, 2010. [CrossRef]
  • A. Maldonado-Reyes, C. Montero-Ocampo, and O. Solorza-Feria, “Remediation of drinking water contaminated with arsenic by the electro-removal process using different metal electrodes,” Journal Environmental Monitoring, Vol. 9, pp. 1241–1247, 2007. [CrossRef]
  • A. M. Atta, H. A. Al-Lohedan, A. O. Ezzat, A. M. Tawfik, and A. I. Hashem “Synthesis of zinc oxide nanocomposites using poly (ionic liquids) based on quaternary ammonium acrylamidomethyl propane sulfonate for water treatment,” Journal of Molecular Liquid, Vol. 236, pp. 38–47, 2017. [CrossRef]
  • M. H. Dehghani, A. Dehghan, H. Alidadi, M. Dolatabadi, M. Mehrabpour, and A. Converti, “Removal of methylene blue dye from aqueous solutions by a new chitosan/zeolite composite from shrimp waste: kinetic and equilibrium study,” Korean Journal of Chemical Engineering, Vol 23, pp. 1–9, 2027.
  • M. Yoosefian, S. Ahmadzadeh, M. Aghasi, and M. Dolatabadi, “Optimization of electrocoagulation process for efficient removal of ciprofloxacin antibiotic using iron electrode; kinetic and isotherm studies of adsorption,” Journal of Molecular Liquids, Vol. 225, pp. 544–553, 2017. [CrossRef]
  • S. Ahmadzadeh, A. Asadipour, M. Yoosefian, and M. Dolatabadi, “Improved electrocoagulation process using chitosan for efficient removal of cefazolin antibiotic from hospital wastewater through sweep flocculation and adsorption; kinetic and isotherm study,” Desalination and Water Treatment, Vol.92, pp.160–171, 2017. [CrossRef]
  • A. Careghini, A. F. Mastorgio, S. Saponaro, and E. Sezenna, “Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review,” Environmental Science and Pollution. Research, Vol. 22, pp. 5711–5741, 2015. [CrossRef]
  • C. Darvishi, R. Soltani, A. Khataee, H. Godini, M. Safari, M. Ghanadzadeh, and M. Rajaei, “Response surface methodological evaluation of the adsorption of textile dye onto biosilica/alginate nanobiocomposite: thermodynamic, kinetic, and isotherm studies,” Desalination and Water Treatment, Vol. 56, pp. 1389–1402, 2015. [CrossRef]
  • A. Panagopoulos, K. J. Haralambous, and M. Loizidou, “Desalination brine disposal methods and treatment technologies - a review,” Science of The Total Environment, Vol. 693, Article 133545, 2019. [CrossRef]
  • A. Hassani, M. Kiranan, R. D. C. Soltani, A. Khataee, and S. Karaca, “Optimization of the adsorption of a textile dye onto nanoclay using a central composite design,” Turkish Journal of Chemistry, Vol. 39, pp. 734–749, 2015. [CrossRef]
  • R. D. C. Soltani, A. J. Jafari, and G. S. Khorramabadi, “Investigation of cadmium (II) ions biosorption onto pretreated dried activated sludge,” American Journal of Environmental Science, Vol. 5, pp. 4152, 2009. G. Chen. Electrochemical technologies in wastewater treatment,” Separation and Purification Technology, Vol. 38, pp. 11–41, 2004. [CrossRef]
  • Y.-J. Liu, Y.-L. Huang, S.-L. Lo, and C.-Y. Hu, “Comparing the effects of types of electrode on the removal of multiple pharmaceuticals from water by electrochemical methods,” Water, Vol. 12, Article 2332, 2020.
  • S. M. Nazmuz, “Electrochemical wastewater treatment,” TechRxiv November 03, 2021. doi: 10.36227/techrxiv.16913476.v1
  • G. Z. Kyzas, and K. A. Matis, “Electroflotation process: A review,” Journal of Molecular Liquids, Vol. 220, pp. 657–664, 2016. [CrossRef]
  • Y. Feng, L. Yang, J. Liu, and B. E. Logan, “Electrochemical technologies for wastewater treatment and resource reclamation,” Environmental Science: Water Research & Technology, Vol. 2(5), pp. 800–831, 2016. [CrossRef]
  • A. G. Khorram, N. Fallah, B. Nasernejad, N. Afsham, M. Esmaelzadeh, and V. Vatanpour, “Electrochemical-based processes for produced water and oily wastewater treatment: A review,” Chemosphere, Vol. 338, Article 139565, 2023. [CrossRef]
  • T. Zheng, J. Wang, Q. Wang, H. Meng, and L. Wang, “Research trends in electrochemical technology for water and wastewater treatment,” Applied Water Science, Vol. 7, pp. 13–30, 2017. [CrossRef]
  • E. T. Amaral, L. B. Bender, T. M. Rizzetti, and R. C. Schneider, “Removal of organic contaminants in water bodies or wastewater by microalgae of the genus chlorella: A review,” Case Studies in Chemical and Environmental Engineering, Vol. 8, Article 100433, 2023. [CrossRef]
  • J. Radjenovic, and D. L. Sedlak, “Challenges and Opportunities for Electrochemical Processes as Next-Generation Technologies for the Treatment of Contaminated Water,” Environmental Science & Technology, Vol. 49(19), pp. 11292–11302, 2015. [CrossRef]
  • C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, and M. Zhou, “Three-dimensional electrochemical process for wastewater treatment: A general review,” Chemical Engineering Journal, Vol. 228, pp. 455–467, 2013. [CrossRef]
  • W. Nabgan, M. Saeed, A. A. Jalil, B. Nabgan, Y. Gambo, M. W. Ali, … and M. Y. Mohamud, “A state of the art review on electrochemical technique for the remediation of pharmaceuticals containing wastewater,” Environmental Research, Vol. 210, Article 11297, 2022. [CrossRef]
  • J. Li, J. Jin, Y. Zhao, Z. Zou, Y. Wu, J. Sun, and J. Xia,” Enhancing phosphorus bioavailability in sewage sludge through co-hydrothermal treatment with biomass,” Journal of Water Process Engineering, Vol. 50, Article 103341, 2023. [CrossRef]
  • M. S. Najafinejad, S. Chianese, A. Fenti, P. Iovino, and D. Musmarra, “Application of electrochemical oxidation for water and wastewater treatment: An overview,” Molecules, Vol 28(10), Article 4208, 2023.
  • G. Gerner, L. Meyer, R. Wanner, T. Keller, and R. Krebs, “Sewage sludge treatment by hydrothermal carbonization: Feasibility study for sustainable nutrient recovery and fuel production,” Energies, Vol 14, Article 2697, 2021. [CrossRef]
  • M. Shestakova, and M. Sillanpää, “Electrode materials used for electrochemical oxidation of organic compounds in wastewater,” Reviews in Environmental Science and Bio/Technology, Vol 16, pp. 223–238, 2017. [CrossRef]
  • S. W. da Silva, J. B. Welter, and L. L. Albornoz, “Advanced electrochemical oxidation processes in the treatment of pharmaceutical containing water and wastewater: A review,” Current Pollution Reports, Vol. 7, pp. 146–159, 2021. [CrossRef]
  • J. Sun, L. Liu, and F. Yang, “Electro-enhanced chlorine-mediated ammonium nitrogen removal triggered by an optimized catalytic anode for sustainable saline wastewater treatment,” Science of The Total Environment, Vol 776, Article 146035, 2021. [CrossRef]
  • G. H. Tran, T. K. Tran, H.-J. Leu, D. Richards, and S.-S. Lo, “An integrated system combining electrochemical oxidation and filtration processes to remove chlorine from pharmaceutical industry wastewater,” Arabian Journal of Chemistry, Vol. 17(3), Article 105611, 2024. [CrossRef]
  • R. Alam, S. U. Khan, M. Usman, M. Asif, and I. H. Farooqi, “A critical review on treatment of saline wastewater with emphasis on electrochemical based approaches,” Process Safety and Environmental Protection, Vol. 158, pp. 625643, 2022. [CrossRef]
  • A. Abbas, M. Al-Raad, M. Hanafiah, S. M. Ahmed, S. Mohammed, and A. Ajeel, “Optimized parameters of the electrocoagulation process using a novel reactor with a rotating anode for saline water treatment,” Environmental Pollution, Vol. 265, Article 115049, 2019. [CrossRef]
  • H Kaya, “A research on electrode applications: synthesis of nickel-doped graphene oxide,” International Journal of Pure and Applied Sciences, Vol. 10(1), pp. 3746, 2024. [CrossRef]
  • O Görmez, and A. Gizir, “Subcritical water oxidation of diethyl phthalate using H2O2 and K2S2O8 as oxidizing agents: application of Box-Behnken design,” International Journal of Pure and Applied Sciences, Vol. 10(1), pp. 290302, 2024. [CrossRef]
  • M. Arienzo, P. Adamo, J. Chiarenzelli, M. R. Bianco, and A. De Martino, “Retention of arsenic on hydrous ferric oxides generated by electrochemical peroxidation,” Chemosphere Vol. 48, pp. 1009–1018, 2002. [CrossRef]
  • A. Al-Raad, A. Hanafiah, M. M. Naje, A. S. Ajeel, M. A. O. Basheer, A. Ali Aljayashi, T. Ekhwan, and M. Toriman, “Treatment of saline water using electrocoagulation with combined electrical connection of electrodes,” Processes, Vol. 7(5), Article 242, 2019. [CrossRef]
  • F. Y. AlJaberi, S. A. Ahmed, and H. F. Makki, “Electrocoagulation treatment of high saline oily wastewater: evaluation and optimization,” Heliyon, Vol. 6(6), Article e03988, 2020. [CrossRef]
  • Y. Yavuz, and U. Ögütveren, “Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes,” Journal of Environmental. Management, Vol. 207, pp. 151–158, 2018. [CrossRef]
  • S. T. McBeath, M, Mohseni, and D. P.Wilkinson, “Pilot-scale iron electrocoagulation treatment for natural organic matter removal,” Environmental Technology, pp.1–9, 2018. [CrossRef]
  • S. Müller, T. Behrends, and C. M. van Genuchten, “Sustaining efficient production of aqueous iron during repeated operation of Fe (0)-electrocoagulation,” Water Resources, Vol. 155, pp. 455–464, 2019. [CrossRef]
  • K. S. Hashim, R. AlKhaddar, A. Shaw, P. Kot, D. Al-Jumeily, R. Alwash, and M. H. Aljefery, “Electrocoagulation as an eco-friendly River water treatment method. In: Advances in Water Resources Engineering and Management,” Springer, pp. 219–235, 2020. [CrossRef]
  • K. Mehmet, D. Reza, S, Cheshmeh, I. O. Philip, and K. A. Alireza, “A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms,” Environmental Technology and Innovation, Vol. 17, Article 100519, 2020. [CrossRef]
  • K. S. Hashim, R. Al Khaddar, N. Jasim, A. Shaw, D. Phipps, P. Kot, … and R. Alawsh, “Electrocoagulation as a green technology for phosphate removal from River water,” Separation Purification and Technology, Vol. 210, pp. 135–144, 2019a. [CrossRef]
  • M. A. Hashim, A. Kundu, S. Mukherjee, Y. S. Ng, S. Mukhopadhyay, G. Redzwan, and B. S. Gupta, “Arsenic removal by adsorption on activated carbon in a rotating packed bed,” Journal of Water Process Engineering, Vol. 30, Article 100591, 2019b. [CrossRef]
  • S. D. U Islam, “Electrocoagulation (EC) technology for wastewater treatment and pollutants removal,” Sustainable Water Resources Management, Vol. 5, pp. 359–380, 2019. [CrossRef]
  • J. A. Gomes, P. Daida, M. Kesmez, M. Weir, H. Moreno, J. R. Parga, and E. Peterson, “Arsenic removal by electrocoagulation using combined Al–Fe electrode system and characterization of products,” Journal of Hazardous Materials, Vol. 139, pp. 220–231, 2007. [CrossRef]
  • V. Gilhotra, L. Das, A. Sharma, T. S. Kang, P. Singh, R. S. Dhuria, and M. S. Bhatti, “Electrocoagulation technology for high strength arsenic wastewater: process optimization and mechanistic study,” Journal of Cleaner Production, Vol. 198, pp. 693–703, 2018. [CrossRef]
  • M. López-Guzmán, M. Alarcón-Herrera, J. Irigoyen-Campuzano, L. Torres-Castañón, and L. Reynoso-Cuevas, “Simultaneous removal of fluoride and arsenic from well water by electrocoagulation, Science of the Total Environment, Vol. 678, pp. 181–187, 2019a. [CrossRef]
  • H. N. Kim, and J. H. Park, Simultaneous removal of arsenic and lead by iron phosphate and its potential for immobilization in mixed-contaminated soil, Frontiers in Environmental Science, Vol. 12, Article 1358561, 2024. [CrossRef]
  • P. Song, Q. Song, Z. Yang, G. Zeng, H. Xu, X. Li, and W. Xiong, “Numerical simulation and exploration of electrocoagulation process for arsenic and antimony removal: Electric field, flow field, and mass transfer studies,” Journal of Environmental Management, Vol. 228, pp. 336–345, 2018. [CrossRef]
  • S. Ghosh, A. Debsarkar, and A. Dutta, “Technology alternatives for decontamination of arsenic-rich groundwater—A critical review,” Environmental Technology and Innovation, Vol 13, pp. 277–303, 2019. [CrossRef]
  • I. A. Oke, S. Lukman, T. A. Aladesanmi, E. O. Fehintola, S. J. Amoko, and O. O. Hammed, “Chapter 8 Electrochemical Treatment of Wastewater: An Emerging Technology for Emerging Pollutants in Effects of Emerging Chemical Contaminants on Water Resources and Environmental Health,” In V. Shikuku, (Ed.), United States of America by IGI Global, pp. 133–157, 2020. [CrossRef]
  • A. Ali, I. A. Shaikh, S. R. Ahmad, M. B. Shakoor, J.W.H. Yong, M. Rizwan, and F. Samina, “Application of effluent reduction methods and treatment using advanced oxidation process at leather chemicals and tanning industries,” Frontiers in Environmental Science, Vol. 12, Article 1422107, 2024. [CrossRef]
  • H.K. Hansen, P. Nunez, D., Raboy, I., Schippacasse, and R. Grandon, “Electrocoagulation in wastewater containing arsenic: Comparing different process designs,” Electrochemical Acta Vol. 52, pp. 3464–3470, 2007. [CrossRef]
  • N. Balasubramanian, T. Kojima, and C. Srinivasakannan, “Arsenic removal through electrocoagulation: kinetic and statistical modelling,” Chemical Engineering Journal, Vol. 155, pp. 76–82, 2009. [CrossRef]
  • P. Lakshmipathiraj, S. Prabhakar, and G. B. Raju, “Studies on the electrochemical decontamination of wastewater containing arsenic,” Separation Purification and Technology, Vol.73, pp. 114–121, 2010a. [CrossRef]
  • D. Lakshmanan, D. A. Clifford, and G. Samanta, “Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation,” Water Resources, Vol.44, pp. 5641–5652, 2010b. [CrossRef]
  • I. Ali, V. K. Gupta, T. A. Khan, and M. Asim, “Removal of arsenate from aqueous solution by electro-coagulation method using Al-Fe electrodes,” International. Journal of Electrochemical. Science. Vol. 7, pp. 1898–1907, 2012. [CrossRef]
  • R. Daniel, and R. A. Prabhakara, “An efficient removal of arsenic from industrial effluents using electro-coagulation as clean technology option,” International. Journal of Environmental Research, Vol. 6, pp. 711–718, 2012.
  • S. Amrose, A. Gadgil, V. Srinivasan, K. Kowolik, M. Muller, J. Huang, and R. Kostecki, “Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate” Journal of Environmental Science Health A, Vol. 48, pp. 1019–1030, 2013. [CrossRef]
  • S. E. Amrose, S. R. Bandaru, C. Delaire, C. M. van Genuchten, A. Dutta, A. DebSarkar, … and A. J. Gadgil, “Electro-chemical arsenic remediation: field trials in West Bengal,” Science of Total Environment. Vol. 488, pp. 539–546, 2014. [CrossRef]
  • O. J. Flores, J. L. Nava, G. Carreño, E. Elorza, and F. Martínez, “Arsenic removal from groundwater by electrocoagulation in a pre-pilot-scale continuous filter press reactor,” Chemical Engineering Science, Vol. 97, pp. 1–6, 2013. [CrossRef]
  • A. García-Lara, and C. Montero-Ocampo, “Improvement of arsenic electro-removal from underground water by lowering the interference of other ions,” Water Air Soil Pollution, Vol. 205, pp. 237243, 2010. [CrossRef]
  • A. García-Lara, C. Montero-Ocampo, and F. Martínez-Villafañe, “An empirical model for treatment of arsenic contaminated underground water by electrocoagulation process employing a bipolar cell configuration with continuous flow,” Water Science and Technology, Vol. 60, pp. 2153–2160, 2009. [CrossRef]
  • R. Alcacio, J. L. Nava, G. Carreño, E. Elorza, and F. Martínez, “Removal of arsenic from a deep well by electrocoagulation in a continuous filter press reactor,” Water Science and Technology: Water Supply, Vol. 14, pp. 189–195, 2014. [CrossRef]
  • B. Z. Can, R. Boncukcuoglu, A. E. Yilmaz, and B. A. Fil, “Effect of some operational parameters on the arsenic removal by electrocoagulation using iron electrodes,” Journal of Environmental Health Science and Engineering, Vol. 12, pp. 9598, 2014. [CrossRef]
  • W. Bouguerra, A. Barhoumi, N. Ibrahim, K. Brahmi, L. Aloui, and B. Hamrouni, “Optimization of the electrocoagulation process for the removal of lead from water using aluminium as electrode material,” Desalination Water Treatment, Vol. 56, pp. 2672–2681, 2015. [CrossRef]
  • B. Deng, “A bio-inspired membrane for arsenic removal,” Nature Water, Vol. 2, pp 310–311, 2024. [CrossRef]
  • J. H. Kim, H. A. Maitlo, and J. Y. Park, “Treatment of synthetic arsenate wastewater with iron-air fuel cell electrocoagulation to supply drinking water and electricity in remote areas,” Water Research, Vol. 115, pp. 278–286, 2017. [CrossRef]
  • M. Kobya, A. Akyol, E. Demirbas, and M. Oncel, “Removal of arsenic from drinking water by batch and continuous electrocoagulation processes using hybrid Al-Fe plate electrodes,” Environment. Progress Sustainable Energy, Vol. 33, pp.131–140, 2014. [CrossRef]
  • M. Kobya, E, Demirbas, U. Gebologlu, M. Oncel, and Y. Yildirim, “Optimization of arsenic removal from drinking water by electrocoagulation batch process using response surface methodology,” Desalination Water Treatment Vol. 51, pp. 6676–6687, 2013. [CrossRef]
  • M. Kobya, E. Demirbas, and F. Ulu, “Evaluation of operating parameters with respect to charge loading on the removal efficiency of arsenic from potable water by electrocoagulation,” Journal of Environmental Chemical Engineering, Vol.4, pp. 1484–1494, 2016. [CrossRef]
  • M. Kobya, U. Gebologlu, F. Ulu, S. Oncel, and E. Demirbas, “Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes,” Electrochemical Acta, Vol. 56, pp. 5060–5070, 2011a. [CrossRef]
  • M. Kobya, M. Oncel, E. Demirbas, and M. Celen, “Arsenic and boron removal from spring and groundwater samples in boron mining regions of Turkey by electrocoagulation and ion-exchange consecutive processes,” Desalination Water Treatment, Vol. 93, pp. 288–296, 2017. [CrossRef]
  • M. Kobya, F. Ozyonar, E. Demirbas, E. Sik, and M. Oncel, “Arsenic removal from groundwater of Sivas-Şarkişla Plain, Turkey by electrocoagulation process: comparing with iron plate and ball electrodes,” Journal of Environmental Chemical Engineering, Vol. 3, pp. 1096–1106, 2015. [CrossRef]
  • M. Kobya, E. Sik, E. Demirbas, A.Y. Goren, and M. S. Oncel, “Optimization of some cations for removal of arsenic from groundwater by electrocoagulation process,” Environmental Engineering Management Journal, Vol. 17, pp. 2333, 2018. [CrossRef]
  • M. Kobya, F. Ulu, U. Gebologlu, E. Demirbas, and M. S. Oncel, “Treatment of potable water containing low concentration of arsenic with electrocoagulation: Different connection modes and Fe–Al electrodes,” Separation Purification and Technology, Vol. 77, pp. 283–293, 2011b. [CrossRef]
  • P. T. Binh, N. T. Van Anh, M. T. T. Thuy, and M. T. Xuan, “Effect of potential on arsenic treatment using technology of electrocoagulation,” Vietnam Journal of Chemistry, Vol. 56, pp. 478–482, 2018. [CrossRef]
  • A. Gören, M. Öncel, E. Demirbas, E. Şık, and M. Kobya, “Removal of arsenate by electrocoagulation reactor using aluminum ball anode electrodes,” Water Practices Technology, Vol. 13, pp. 753–763, 2018. [CrossRef]
  • T. G. Kazi, K. D. Brahman, J. A, Baig, and H. I. Afridi, “A new efficient indigenous material for simultaneous removal of fluoride and inorganic arsenic species from groundwater,” Journal of Hazardous Materials, Vol. 357, pp. 159167, 2018. [CrossRef]
  • E. Demirbas, M. Kobya, M. S. Oncel, E. Şık, and A.Y. Goren, “Arsenite removal from groundwater in a batch electrocoagulation process: Optimization through response surface methodology,” Separation Science and Technology, Vol 54, pp. 775–785, 2019. [CrossRef]
  • M. Rosales, O. Coreño, and J. L. Nava, “Removal of hydrated silica, fluoride and arsenic from groundwater by electrocoagulation using a continuous reactor with a twelve-cell stack,” Chemosphere Vol. 211, pp. 149–155, 2018. [CrossRef]
  • F. Younas, A. Mustafa, Z. U. R. Farooqi, X. Wang, S. Younas, W. Mohy-Ud-Din, … and M. M. Hussain, “Current and emerging adsorbent technologies for wastewater treatment: trends, limitations, and environmental implications,” Water, Vol. 13, Article 215, 2021. [CrossRef]
  • O. A. Obijole, S. T, Ogungbemi E. A, Adekunbi, B. S. Sani, M. D, Idi, and I. A. Oke, “Electrochemical treatment of water as an effective and emerging technology,” IGI Global, 2022. [CrossRef]
  • E. A. Adekunbi, J. O. Babajide, H. O. Oloyede, J. S. Amoko, O. A. Obijole, and I. A. Oke, “Evaluation of microsoft excel solver as a tool for adsorption kinetics determination,” Ife Journal of Science, Vol. 21(3), pp. 169–183, 2019. [CrossRef]
  • E. A. Adekunbi, O. A. Obijole, J. O. Babajide, B. M. Ojo, O. K. Olayanju, K. A. Bolorunduro, and I. A. Oke, “Mechanism and activation energy of arsenic removal from aqueous solutions,” Algerian Journal of Research and Technology, Vol. 7(1), pp. 4665, 2023. [CrossRef]
  • P. I. Omwene, M. Kobya, and O. T. Can, “Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes,” Ecology Engineering, Vol. 123, pp. 65–73, 2018. [CrossRef]
  • P. I. Omwene, M. Çelen, M. S. Öncel, and M. Kobya, “Arsenic removal from naturally arsenic contaminated ground water by packed-bed electrocoagulator using Al and Fe scrap anodes,” Process Separation and Environmental Protection, Vol. 121, pp. 20–31, 2019. [CrossRef]
  • P. I. Omwene, and M. Kobya, “Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: a comparative study,” Process. Separation and Environmental Protection, Vol. 116, pp. 34–51, 2018. [CrossRef]
  • N. S. Graça, A. M. Ribeiro, and A. E. Rodrigues, “Modeling the electrocoagulation process for the treatment of contaminated water,” Chemical Engineering Science, Vol. 197, pp. 379–385, 2019. [CrossRef]
  • E. A. Adekunbi, M. A. Asani, S. Lukman, B. S. Sani, T. S. Ogungbemi, B. M. Ojo, and I. A. Oke, “Fates and selected recent treatment techniques of emerging pollutants: A narrative review,” Science Forum Journal of Pure and Applied Sciences, Vol. 22, pp. 648–669, 2022.
  • M. S. Islam, M. T. Islam, Z. Ismail, A. R. M. T, Islam, R. Khan, F. Hasan, … and A. M. Idris, “Assessment of trace elements in the long-term banana cultivation field’s soil,” Frontier Environmental Science, Vol. 11, Article 1272840, 2023. [CrossRef]
  • S. G. Tewari, J. P. Bell, N. Budgen, S. Platz, M. Gibbs, P. Newham, and H. Kimko, “Pressurized metered-dose inhalers using next-generation propellant HFO-1234ze(E) deposit negligible amounts of trifiuoracetic acid in the environment,” Frontier Environmental Science, Vol. 11, Article 1297920, 2023. [CrossRef]
  • J. J. Halama, R. B. McKane, B. L. Barnhart, P. P. Pettus, A. F. Brookes, A. K. Adams, … and E. P. Kolodziej, “Watershed analysis of urban stormwater contaminant 6PPD-Quinone hotspots and stream concentrations using a process-based ecohydrological model,” Frontier Environmental Science Vol. 12 , Article 1364673, 2024. [CrossRef]
  • P. Pérez-Rodríguez, and Y. Alhaj Hamoud, “Editorial: The restoration of degraded soils: amendments and remediation,” Frontier Environmental Science, Vol. 12, Article 1390795, 2024. [CrossRef]
  • S. Aziz, S. Anbreen I. Iftikhar, T. Fatima, A. Iftikhar, and L. Ali, “Green technology: synthesis of iron-modified biochar derived from pine cones to remove azithromycin and ciprofioxacin from water,” Frontier Environmental Science, Vol. 12, Article 1353267, 2024. [CrossRef]
  • S. J. C Galgo, R. C. Canatoy, J. Y. Lim, H. C. Park and P. J. Kim, “A potential of iron slag-based soil amendment as a suppressor of greenhouse gas (CH4 and N2O) emissions in rice paddy,” Frontier Environmental Science, Vol. 12, Article 1290969, 2024. [CrossRef]
  • A. A. Al-Raad, and M. M. Hanafiah, “Sulfate (SO42−) removal by electrocoagulation process under combined electrical connection of electrodes,” IOP Conference Series: Earth and Environmental Science, Vol. 880, Article 012033, 2021. [CrossRef]
  • A. A. Al-Raad, M. M. Hanafiah, A. S. Naje, and M. A. Ajeel, “Optimized parameters of the electrocoagulation process using a novel reactor with rotating anode for saline water treatment,” Environmental Pollution, Vol. 265, Part B Article 115049, 2020, [CrossRef]
  • D. J. Ahirrao, S. Tambat, A. B. Pandit, and N. Jha, “Sweet-lime-peels-derived activated-carbon-based electrode for highly efficient supercapacitor and flow-through water desalination,” Chemistry Select, Vol. 4(9), pp. 2610–2625, 2019. [CrossRef]
  • M. A. Ahmed, and S. Tewari, “Capacitive deionization: Processes, materials and state of the technology,” Journal of Electroanalytical Chemistry, Vol. 813, pp. 178–192, 2018. [CrossRef]
  • J. S. Al-Marri, A. B. Abouedwan, M. I. Ahmad, and N. Bensalah, “Electrocoagulation using aluminum electrodes as a sustainable and economic method for the removal of kinetic hydrate inhibitor (polyvinyl pyrrolidone) from produced wastewaters,” Frontiers in Water, Vol. 5, Article 1305347, 2023. [CrossRef]
  • F. A. AlMarzooqi A. A, Al Ghaferi I. Saadat, and N, Hilal, “Application of capacitive deionisation in water desalination: A review,” Desalination, Vol. 342, pp. 3–15, 2014. [CrossRef]
  • A. T. Angeles, and J. Lee, “Carbon‐based capacitive deionization electrodes: development techniques and its influence on electrode properties,” The Chemical Record, Vol. 21(4), pp. 820840, 2021.
  • K. Y. Chen, Y. Y. Shen, D. M. Wang, and C. H. Hou, “Carbon nanotubes/activated carbon hybrid as a high-performance suspension electrode for the electrochemical desalination of wastewater,” Desalination, Vol. 522, Article 115440, 2022. [CrossRef]
  • F. Duan, Y. Li, H. Cao, Y. Wang, J. C. Crittenden, and Y. Zhang, “Activated carbon electrodes: electrochemical oxidation couple with desalination for wastewater treatment,” Chemosphere, Vol. 125, pp. 205211, 2015. [CrossRef]
  • S. Dutta S. Y. Huang C. Chen J. E. Chen, Z. A. Alothman, Y. Yamauchi, C.H. Hou, and K. C. W. Wu, “Cellulose framework directed construction of hierarchically porous carbons offering high-performance capacitive deionization of brackish water,” ACS Sustainable Chemistry & Engineering, Vol. 4(4), pp. 18851893, 2016. [CrossRef]
  • M. Ebba, P. Asaithambi, and E. Alemayehu, “Development of electrocoagulation process for wastewater treatment: optimization by response surface methodology,” Heliyon, Vol. 8(5), Article 09383, 2022. [CrossRef]
  • S. Garcia-Segura, M. M. S. Eiband, J. V. de Melo, and C. A. Martínez-Huitle, “Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals,” emerging applications and its association with other technologies, Journal of Electroanalytical Chemistry, Vol. 801, pp. 267–299, 2017. [CrossRef]
  • U. Ghimire, M. K. Heili, and V. G. Gude, “Electrochemical desalination coupled with energy recovery and storage,” Desalination, Vol. 503, Article 114929, 2021. [CrossRef]
  • G. Greco, D. Tatchev, A. Hoell, M. Krumrey, S. Raoux, R. Hahn, and G. A. Elia, “Influence of the electrode nano/microstructure on the electrochemical properties of graphite in aluminum batteries,” Journal of Materials Chemistry A, Vol. 6(45), pp. 2267322680, 2018. [CrossRef]
  • J. Gustafsson, P. Mikkola, M. Jokinen, and J. B. Rosenholm, “The influence of pH and NaCl on the zeta potential and rheology of anatase dispersions,” Colloids and Surfaces A Physicochemical and Engineering Aspects, Vol. 175(3), pp. 349–359, 2000. [CrossRef]
  • D. Hossein, A. H. Hasheminejad, and D. J. Lampert, “Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction,” Frontiers of Environmental Science & Engineering, Vol. 14(6), pp. 99, 2020. [CrossRef]
  • M. Hosseinzadeh, S. A. Mozaffari, and F. Ebrahimi, “Porous 3D-graphene functionalized with MnO2 nanospheres and NiO nanoparticles as highly efficient electrodes for asymmetric capacitive deionization: Evaluation by impedance-derived capacitance spectroscopy,” Electrochimica Acta, Vol. 427, Article 140844, 2022. [CrossRef]
  • C. P. Hsu, Z. B. Pan, and H. P. Lin, “Synthesis of Multiporous Carbons with Biomaterials for Applications in Supercapacitors and Capacitive Deionization,” In Energy Storage and Conversion Materials, (pp. 201222). CRC Press, 2023. [CrossRef]
  • G. Khajouei, S. Mortazavian, A. Saber, M. N. Zamani, and H. Hasheminejad, “Treatment of composting leachate using electro-Fenton process with scrap iron plates as electrodes,” International Journal of Environmental Science and Technology, Vol. 16(8), pp 4133–4142, 2019. [CrossRef]
  • Y. J. Kim, and J. H. Choi, “Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer,” Water Research, Vol. 44(3), pp. 990996, 2010. [CrossRef]
  • K. N. Knust, D. Hlushkou, U. Tallarek, and R. M. Crooks, “Electrochemical desalination for a sustainable water future,” ChemElectroChem, Vol. 1(5), pp. 850–857, 2014. [CrossRef]
  • K. Laxman, M. T. Z, Myint, M. Al Abri, P. Sathe, S. Dobretsov, and J. Dutta, “Desalination and disinfection of inland brackish ground water in a capacitive deionization cell using nanoporous activated carbon cloth electrodes,” Desalination, Vol. 362, pp. 126–132, 2015. [CrossRef]
  • W. B. Li, S. Y. Lin, T. D. H. Nguyen, H. C. Chung, N. T. T. Tran, N. Thi Han, and M. F. Lin, “Diversified phenomena in sodium-, potassium-and magnesium-related graphite intercalation compounds,” In First-Principles Calculations for Cathode, Electrolyte and Anode Battery Materials (pp. 11-1). Bristol, UK: IOP Publishing, 2021.
  • J. A. Lim, N. S. Park, J.-S. Park, and J. H. Choi, “Fabrication and characterization of a porous carbon electrode for desalination of brackish water,” Desalination, Vol. 238(1-3), pp. 37–42, 2009. [CrossRef]
  • D. Liu, K. Huang, L. Xie, and H. L. Tang, “Relation between operating parameters and desalination performance of capacitive deionization with activated carbon electrodes,” Environmental Science Water Research & Technology, Vol.1(4), pp. 516–522, 2015. [CrossRef]
  • P. Liu, T. Yan, L. Shi, H. S. Park, X. Chen, Z. Zhao, and D. Zhang, “Graphene-based materials for capacitive deionization,” Journal of Materials Chemistry A Materials for Energy and Sustainability, Vol. 5(27), pp. 13907–13943, 2017a. [CrossRef]
  • P. Liu, T. Yan, J. Zhang, L. Shi, and D. Zhang, “Separation and recovery of heavy metal ions and salt ions from wastewater by 3D graphene-based asymmetric electrodes via capacitive deionization,” Journal of Materials Chemistry A Materials for Energy and Sustainability, Vol. 5(28), pp. 14748–14757, 2017b. [CrossRef]
  • Y. Liu, K. Wang, X. Xu, K. Eid, A. M. Abdullah, L. Pan, and Y. Yamauchi, “Recent advances in faradic electrochemical deionization: system architectures versus electrode materials,” ACS Nano, Vol.15(9), pp 1392413942, 2021. [CrossRef]
  • M. A. Luciano, H. Ribeiro, G. E. Bruch, and G. G. Silva, “Efficiency of capacitive deionization using carbon materials based electrodes for water desalination,” Journal of Electroanalytical Chemistry, Article 113840, 2020. [CrossRef]
  • Y. Luciano, Y. Zhao, and S. Cotterill, “Examining current and future applications of electrocoagulation in wastewater treatment,” Water, Vol. 15(8), Article 1455, 2023. [CrossRef]
  • M. McKague, “Capacitive Storage of Ions Modelled in a Pore Network using Electrical Double Layer Theories: Helmholtz, Gouy-Chapman-Stern, and modified Donnan,” [Master's thesis], University of Waterloo, 2021.
  • K. Meiramkulova, D. Devrishov, N. Marzanov, S. Marzanova, A. Kydyrbekova, T. Uryumtseva, and T. Mkilima, “Performance of graphite and titanium as cathode electrode materials on poultry slaughterhouse wastewater treatment,” Materials, Vol.13(20), pp. 44894496, 2020. [CrossRef]
  • A. Guzmán, J. L. Nava, O. Coreño, I. Rodríguez, and S. Gutiérrez, “Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor,” Chemosphere, Vol. 144, pp. 2113–2120, 2016. [CrossRef]
  • B. Merzouk, K. Madani, and A. Sekki, “Using electrocoagulation–electroflotation technology to treat synthetic solution and textile wastewater, two case studies,” Desalination, Vol. 250, pp. 573–577, 2010.
  • M. Torkamanzadeh, C. Kök, P. Rolf Burger, J. Lee, C. Kim, and V. Presser, “Best practice for electrochemical water desalination data generation and analysis,” Cell Press Phsyical Science, Vol. 4, Article101661, 2023. [CrossRef]
  • L. O Paulista, P. H. Presumido, and J. D. P Theodoro, “Efficiency analysis of the electrocoagulation and electroflotation treatment of poultry slaughterhouse wastewater using aluminum and graphite anodes,” Environmental and Science Pollution Research, Vol. 25, pp. 19790–19800, 2018. [CrossRef]
  • R. W. Pekala, J. C. Farmer, C. T. Alviso, T. D. Tran, S. T. Mayer, J. M. Miller, and B. Dunn, “Carbon aerogels for electrochemical applications,” Journal of Non-Crystalline Solids, Vol. 225, pp 74–80, 1998. [CrossRef]
  • R.J. Chia, W. J., Lau, N., Yusof, H., Shokravi, and A. F. Ismail, “Adsorptive Membranes for Arsenic Removal – Principles, Progress and Challenges,” Separation & Purification Reviews, Vol. 52(4), pp. 379–399, 2022. [CrossRef]
  • S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, and P. M. Biesheuvel, “Water desalination using capacitive deionization with microporous carbon electrodes,” ACS Applied Materials & Interfaces, Vol.4(3), pp. 1194–1199, 2012. [CrossRef]
  • N. Pugazhenthiran, S. Sen Gupta, A. Prabhath, M. Manikandan, J. R. Swathy, V. K. Raman, and Pradeep, “Cellulose derived graphenic fibers for capacitive desalination of brackish water,” ACS Applied Materials & Interfaces, Vol. 7(36), pp. 2015620163, 2015. [CrossRef]
  • Y. Qi, W. Peng, Y. Li, F. Zhang, and X. Fan, “Recent Advances in Covalent Organic Frameworks for Capacitive Deionization: A Review,” Electrochimica Acta, Vol. 479, Article 143870, 2024. [CrossRef]
  • K. Ramalingam, Y. Zhu, J. Wang, M. Liang, Q. Wei, X. Chen, and F. Chen, “Efficient PEDOT electrode architecture for continuous redox-flow desalination,” ACS Sustainable Chemistry & Engineering, Vol. 9(38), pp. 1277912787, 2021. [CrossRef]
  • E. Raymundo‐Piñero F, Leroux, and F, Béguin, “A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer,” Advanced Materials, Vol. 18(14), pp. 1877–1882, 2006. [CrossRef]
  • M. W. Ryoo, and G. Seo, “Improvement in capacitive deionization function of activated carbon cloth by titania modification,” Water Research, Vol. 37(7), pp. 1527–1534, 2003. [CrossRef]
  • S. Porada, B. B. Sales, H. V. M. Hamelers, and P. M. Biesheuvel, “Water desalination with wires,” Journal of Physical Chemistry Letters, Vol. 3, pp. 16131618, 2012. [CrossRef]
  • J. Saha, and S. K. Gupta, “A novel electro-chlorinator using low cost graphite electrode for drinking water disinfection,” Ionics, Vol. 23, pp. 19031913, 2017. [CrossRef]
  • G. Sayiner, F. Kandemirli, and A. Dimoglo, “Evaluation of boron removal by electrocoagulation using iron and aluminum electrodes,” Desalination, Vol. 230(1-3), pp. 205212, 2017. [CrossRef]
  • K. Tang, S. Yiacoumi, Y. Li, and C. Tsouris, “Enhanced water desalination by increasing the electroconductivity of carbon powders for high-performance flow-electrode capacitive deionization,” ACS Sustainable Chemistry & Engineering, Vol. 7(1), pp. 10851094, 2018. [CrossRef]
  • V. Somashekar, A. Vivek Anand, V. Hariprasad, E. M. Elsehly, and M. Kapulu, “Advancements in saline water treatment: a review,” Water Reuse, Vol. 13(3), pp. 475–491, 2023. [CrossRef]
  • V. Pothanamkandathil, J. Fortunato, and C. A. Gorski, “Electrochemical desalination using intercalating electrode materials: A comparison of energy demands,” Environmental Science & Technology, Vol. 54(6), pp. 36533662, 2020. [CrossRef]
  • M. Wang, X. Xu, J. Tang, S. A. Hou, M. S. Hossain, L. Pan, and Y. Yamauchi, “High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches,” Chemical Communications, Vol. 53(78), pp. 10784–10787, 2017a. [CrossRef]
  • Z. Wang, B. Dou, L. Zheng, G. Zhang, Z. Liu, and Z. Hao, “Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material,” Desalination, Vol. 299, pp. 96–102, 2012. [CrossRef]
  • Z. Wang, T. Yan, G. Chen, L. Shi, and D. Zhang, “High salt removal capacity of metal–organic gel derived porous carbon for capacitive deionization,” ACS Sustainable Chemistry & Engineering, Vol. 5(12), pp. 11637–11644, 2017b. [CrossRef]
  • R. Wang, K. Sun, Y. Zhang, C. Qian, and W. Bao, “Dimensional optimization enables high-performance capacitive deionization,” Journal of Materials Chemistry A, Vol. 10(12), pp. 64146441, 2022.
  • W. Wei, J. Xu, W. Chen, L. Mi, and J. Zhang, “A review of sodium chloride-based electrolytes and materials for electrochemical energy technology,” Journal of Materials Chemistry A, Vol. 10(6), pp 26372671, 2022. [CrossRef]
  • W. Xi, J. Jin, Y. Zhang, R. Wang, Y. Gong, B. He, and H. Wang, “Hierarchical MXene/transition metal oxide heterostructures for rechargeable batteries, capacitors, and capacitive deionization,” Nanoscale, Vol. 14(33), pp. 1192311944, 2022. [CrossRef]
  • P. Xu, J. E. Drewes, D. Heil, and G. Wang, “Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology,” Water Research, Vol. 42(10–11), pp. 2605–2617, 2008. [CrossRef]
  • X. Xu, A. E. Allah, C. Wang, H. Tan, A. A. Farghali, M. H. Khedr, … and Y. Yamauchi, “Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination,” Chemical Engineering Journal, Vol. 362, pp. 887–896, 2019. [CrossRef]
  • J. H. Xu, D. E. Turney, A. L. Jadhav, and R. J. Messinger, “Effects of graphite structure and ion transport on the electrochemical properties of rechargeable aluminum–graphite batteries,” ACS Applied Energy Materials, Vol. 2(11), pp. 77997810, 2019. [CrossRef]
  • L. Xu, Y. Mao, Y. Zong, and D. Wu, “Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system,” Water Research, Vol. 190, pp. 116782116787, 2021. [CrossRef]
  • Z. Yang, P. Yang, X. Zhang, H. Yin, F. Yu, and J. Ma, “Two-dimensional hetero-structured TiO2/TiS2 nanosheets for capacitive deionization,” Chemistry of Materials, Vol. 35(5), pp. 20692077, 2023. [CrossRef]
  • A. Yousef, R. M. Abdel Hameed, S. F. Shaikh, A. Abutaleb, M. M. El-Halwany, and A. M Al-Enizi, “Enhanced electro-adsorption desalination performance of graphene by TiC,” Separation and Purification Technology, Vol. 254, Article 117602, 2020.
  • A. Zakharov, A. Tukesheva, S. F. B. Haque, J. Ferraris, A. Zakhidov, T. Tazhibayeva, and V. Pavlenko, “Review of the current state of technology for capacitive deionization of aqueous salt solutions,” Bulletin of the Karaganda University Physics Series, Vol. 111(3), pp 1633, 2023. [CrossRef]
  • B. Zhang, A. Boretti, and S. Castelletto, “Mxene pseudocapacitive electrode material for capacitive deionization,” Chemical Engineering Journal, Vol. 435, Article 134959, 2022. [CrossRef]
  • G. Zhou, W. Li, Z. Wang, X. Wang, S. Li, and D. Zhang, “Electrosorption for organic pollutants removal and desalination by graphite and activated carbon fiber composite electrodes,” International Journal of Environmental Science and Technology, Vol. 12(12), pp. 3735–3744, 2015. [CrossRef]
  • D. Jiang, R. Xu, L. Bai, W. Wu, D. Luo, Z. Li, and X. Xu, “Insights into electrochemical paradigms for lithium extraction: Electrodialysis versus capacitive deionization,” Coordination Chemistry Reviews, Vol. 516, Article 215923, 2024. [CrossRef]
  • P. Asaithambi, M. B. Yesuf, R. Govindarajan, S. Niju, S. Periyasamy, Z. A. Rabba, … and E. Alemayehu, “Combined ozone, photo, and electrocoagulation technologies- An innovative technique for treatment of distillery industrial wastewater,” Environmental Engineering Research, Vol. 29(2), Article 230042, 2024. [CrossRef]
  • L. Zou, L. Li, H. Song, and G. Morris, “Using mesoporous carbon electrodes for brackish water desalination,” Water Research, Vol. 42(8-9), pp. 2340–2348, 2008. [CrossRef]
  • A. Ban, A. Schafer, and H. Wendt, “Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents,” Journal of Applied Electrochemistry, Vol. 28(3), pp. 227236, 1998. [CrossRef]
  • E. Dalampira, and S. A, Nastis, “Mapping Sustainable Development Goals: A network analysis framework,” Sustainable Development, Vol. 2019, pp. 1–10, 2019. [CrossRef]
  • I. A. Oke, “Development and Performance-Testing of electrochemical treatment for selected Industrial Wastewater,” [Unpublished Doctorial Thesis], Department Civil Engineering Obafemi Awolowo University, Ile-Ife, Nigeria, 2007.
  • I. A. Oke, “Orthogonal experiments in the development of carbon –resin for chloride ions removal,” Statistical Methodology, Vol. 6, pp.109–119, 2009. [CrossRef]
  • I. A. Oke, L. E Umoru, O. E. Olorunniwo, F. I. Alo, and M. A. Asani, “Chapter 16: Properties and Structures of Iron Doped Carbon Resin Electrodes for Wastewaters Treatment,” Solid Waste Management and Environmental Remediation. T. Faerber, and J. Herzog, (Eds.), Nova Science Publisher Inc New York. 467 – 484, 2010 [CrossRef]
  • I. A. Oke, L. E. Umoru, and M. O. Ogedengbe, “Properties and stability of a carbon-resin electrode,” Journal of Materials and Design, Vol. 28(7), pp. 22512254, 2007. [CrossRef]
  • I. A. Oke, L. E. Umoru, and M. O. Ogedengbe, “2k Factorial Experiments on Factors That Influence Stability of Carbon Resin Electrodes,” FUTAJEET, Vol. 5(2), pp. 135141, 2007.
  • I. A. Oke, L. E. Umoru, K. T. Oladepo, and M. O. Ogedengbe, “Utilization of Weibull techniques to describe stability distribution of carbon resin electrodes,” Ife Journal of Technology, Vol. 17(1), 3546, 2018.
  • I. A. Oke, L. E. Umoru, and M. O. Ogedengbe, “Utilization of Taguchi Statistical Method In The Development of Carbon Epoxy Electrodes,” Faculty of Science 3-day Conference held between 3rd July and 5th July 2007 at Conference Centre/ Biological Science (BOOC) Lecture Theatres, Obafemi Awolowo University, Ile-Ife, Nigeria, 2007.
  • I. A. Oke, “Influence of carbonization on selected engineering properties of carbon resin electrodes for electrochemical treatment of wastewater,” Canadian Journal of Chemical Engineering, Vol. 87(10), pp. 801–811, 2019. [CrossRef]
  • I. A. Oke, A. O. Obijole, E. A. Adekunbi, J. O. Babajide, M.-D. Idi, and T. O. Aladesanmi, “Thermal property of carbon resin electrodes developed for electrochemical treatment of water and wastewaters,” FUTAJEET, Vol. 15(1), pp. 8497, 2021. [CrossRef]
  • I. A. Oke, and M. O. Ogedengbe, “Development and Properties of Carbon-Epoxy Electrodes,” Faculty of Science 3-day Conference held between 3rd July and 5th July 2007 at Conference Centre/ Biological Science (BOOC) Lecture Theatres, Obafemi Awolowo University, Ile-Ife, Nigeria, 2007.
  • K. O. Olayanju, K. A. Bolorunduro, and I. A. Oke, “Weibull technique for evaluation of swelling: composite graphite resin electrode for electrochemical treatment of gold mining wastewaters,” Materials Science Forum, Vol. 1115(6), pp. 3140, 2024. [CrossRef]
  • I. A. Oke, B. Aremo, D. A. Isadare, O. E. Olorunniwo, S. A. Ayodeji, G. F. Abass, and A. A. Daniyan, “Microstructures of developed composite graphite-resin electrodes,” Materials Sciences and Applications, Vol. 14, pp. 526534, 2023. [CrossRef]
  • I. A. Oke, and M. O. Ogedengbe, “The performance of a locally developed electrolysing equipment,” FUTAJEET, Vol. 5(2), pp. 142146, 2007.
  • I. A. Oke, K. T. Oladepo, and M. O. Ogedengbe, “Utilization of 2k factorial experiments for the determination of factors that influence electrochemical process,” Ife Journal of Technology, Vol. 19(2), pp. 4854, 2007.
  • APHA, “Standard Method for the Examination of Water and Wastewater,” 22nd ed., America Water Works Association and Water Pollution Control Federation, 2012.
  • M. C. M van Loosdrecht, P. H. Nielsen, C. M. Lopez- Vazquez, and D. Brdjanovic, “Experimental Methods in Wastewater Treatment,” 1st ed., International Water Publishing Alliance House, 2016. [CrossRef]
  • E. O. Fehintola E. A. Adekunbi, B. Ojo, J. Awotunde, and I. Oke, “Performance evaluation of a simple electrochemical treatment model for saline wastewaters,” Environmental Research and Technology, Vol.7(2), pp. 160–174, 2024. [CrossRef]
  • A. A. Akindahunsi, F. A. Falade, J. O. Afolayan, and I. A. Oke, “Effects of chloride salt on reinforced concrete structures in Lagos coastal environment,” Journal of Engineering Research, Vol. 14(3), pp. 13 25, 2019.
  • M. S. Thabit, A. H. Hawari, M. H. Ammar, S. Zaidi, G. Zaragoza, and A. Altaee, “Evaluation of forward osmosis as a pretreatment process for multi stage flash seawater desalination,” Desalination, Vol. 461, pp. 22–29, 2019. [CrossRef]
  • N. Melián-Martel, J. J. Sadhwani Alonso, and S. O. Pérez Báez, “Reuse and management of brine in sustainable SWRO desalination plants,” Desalination Water Treatment, Vol. 51(1–3), pp. 560–566, 2013. [CrossRef]
  • N. Lior, and D. Kim, “Quantitative sustainability analysis of water desalination – a didatic example for reverse osmosis,” Desalination, Vol. 431, pp. 157–170, 2018. [CrossRef]
  • S. K. Mishra, and B. Ram, “Steepest Descent Method,” In: Introduction to Unconstrained Optimization with R, Springer, 2021.
  • Y. M. Wu, L. J. Jiang, and W. C. Chew, “Computing highly oscillatory physical optics integral on the polygonal domain by an efficient numerical steepest descent path method,” Journal of Computational Physics, Vol. 236, pp. 408–425, 2013. [CrossRef]
  • G. C. Bento, O. P. Ferreira, and P. R. Oliveira, “Unconstrained steepest descent method for multicriteria optimization on riemannian manifolds,” Journal of Optimization Theory and Applications, Vol. 154(1), pp. 88–107, 2012. [CrossRef]
  • K. Wang, F. Hu, K. Xu, H. Cheng, M. Jiang, R. Feng, and T. Wen, “CASCADE_SCAN: mining signal transduction network from high-throughput data based on steepest descent method,” BMC Bioinformatics, Vol. 12(1), pp. 164, 2011. [CrossRef]
  • J. Y. Bello Cruz, and G. Bouza Allende, “A steepest descent-like method for variable order vector optimization problems,” Journal of Optimization Theory and Applications, Vol.162(2), pp. 371–391, 2013. [CrossRef]
  • E. J. Haug, J. S. Arora, and K. A. Matsui, “A steepest-descent method for optimization of mechanical systems,” Journal of Optimization Theory and Applications, Vol. 19, pp. 401–424, 1976. [CrossRef]
  • G. C. Bento, J. X. Cruz Neto, P. R. Oliveira, and A. Soubeyran, “The self regulation problem as an inexact steepest descent method for multicriteria optimization,” European Journal of Operational Research, Vol. 235(3), pp. 494–502, 2014. [CrossRef]
  • B. K. Körbahti, “Response surface optimization of electrochemical treatment of textile dye wastewater,” Journal of Hazardous Materials, Vol. 145(1-2), pp. 277–286, 2007. [CrossRef]
  • L. H. Szpyrkowicz, G. N. Kelsall, S. Kaul, and M. De Faveri, “Performance of electrochemical reactor for treatment of tannery wastewaters,” Chemical Engineering Science, Vol. 56(4), pp. 1579–1586, 2001. [CrossRef]
  • Y. Deng, N. Chen, C. Feng, F. Chen, H. Liu, and Z. Chen, “Enhancing electrochemical treatment of nitrogen-containing organic wastewater by iron filings: Performance, inhibition of organochlorine by-products accumulation and cost-effectiveness,” Chemical Engineering Journal, Vol. 384, Article 123321, 2019. [CrossRef]
  • Y. N. Tülin, and K. Serdar, “Container washing wastewater treatment by combined electrocoagulation–electrooxidation,” Separation Science and Technology, Vol. 53, pp. 15921603, 2017. [CrossRef]
  • M. Lyvia, “Effect of current density on the efficiency of a membrane electro-bioreactor for removal of micropollutants and phosphorus, and reduction of fouling: A pilot plant case study,” Journal of Environmental Chemical Engineering, Vol. 9(1), Article 104874, 2021. [CrossRef]
  • C. Feng, N. Sugiura, and T. Maekawa, “Performance of Two New Electrochemical Treatment Systems for Wastewaters,” Journal of Environmental Science and Health, Part A, Vol. 39(9), pp. 2533–2543, 2004. [CrossRef]
  • J. Li, and Z. He, “Optimizing the performance of a membrane bio-electrochemical reactor using an anion exchange membrane for wastewater treatment,” Environmental Science: Water Research and Technology, Vol. 1(3), pp. 355–362, 2015. [CrossRef]
  • C. Phalakornkule, B. Karakat, T. Nuyut, and T. Ruttithiwapanich, “Investigation of electrochemical variables and performance of a continuous upflow electrocoagulation process in the treatment of reactive Blue 140,” Water Environment Research, Vol. 82(12), pp. 2325–2332, 2010. [CrossRef]
  • G. Acosta-Santoyo, J. Llanos, A. Raschitor, E. Bustos, P. Cañizares, and M. A. Rodrigo, “Performance of ultrafiltration as a pre-concentration stage for the treatment of oxyfluorfen by electrochemical BDD oxidation,” Separation and Purification Technology, Vol. 237, Article 116366, 2019. [CrossRef]
  • D. Isaac, Q, Tegladza, K. Xu, G. L. Xu, and L. Jun, “Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal,” Process Safety and Environmental Protection, Vol. 146, pp. 169–189, 2021. [CrossRef]
  • S. X. Garcia-Segura, X. Qu, P. J. J. Alvarez, B. P. Chaplin, W. Chen, J. C. Crittenden, … and P. Westerhoff, “Opportunities for Nanotechnology to Enhance Electrochemical Treatment of Pollutants in Potable Water and Industrial Wastewater,” Environmental Science: Nano, Vol. 2020(8), pp. 2178–2194, 2020. [CrossRef]
  • B. M. B. Ensano, L. Borea, V. Naddeo, V. Belgiorno, M. D. G. de Luna, M. Balakrishnan, and F. C. Ballesteros, “Applicability of the electrocoagulation process in treating real municipal wastewater containing pharmaceutical active compounds,” Journal of Hazardous Materials, Vol. 361, pp. 367373, 2019. [CrossRef]
  • J. Meng, W. Nie, K. Zhang, F. Xu, X. Ding, S. Wang, and Y. Qiu, “Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment,” ACS Applied Materials and Interfaces, Vol. 10(16), pp. 13652–13659, 2018. [CrossRef]
  • O. A. Obijole, E. A. Adekunbi, O. J. Babajide, B. S. Sani, M. D. Idi, and I. A. Oke, “A Review of Techniques for Arsenic Removal From Water,” IGI Global, 2022. [CrossRef]
  • M. Darvishmotevalli, A. Zarei, M. Moradnia, M. Noorisepehr, and H. Mohammadi, “Optimization of saline wastewater treatment using electrochemical oxidation process: Prediction by RSM method,” MethodsX, Vol. 6, pp. 11011113, 2019. [CrossRef]
  • A. Mishra, P. Hyunwoong, F. El-Mellouhi, and D. S. Han, “Seawater electrolysis for hydrogen production: Technological advancements and future perspectives,” Fuel, Vol. 361, Article 130636, 2024. [CrossRef]
  • A. J. C. Da Silva, E. V. dos Santos, C. C. de Oliveira Morais, C. A. Martínez-Huitle, and S. S. L. Castro, “Electrochemical treatment of fresh, brine and saline produced water generated by petrochemical industry using Ti/IrO2–Ta2O5 and BDD in flow reactor,” Chemical Engineering Journal, Vol. 233, pp. 4755, 2013. [CrossRef]
  • V. M. Daskalaki, H. Marakas, D. Mantzavinos, A. Katsaounis and P. Gikas, “Use of seawater for the boron-doped diamond electrochemical treatment of diluted vinasse wastewater,” Water Science and Technology, Vol. 68(11), pp. 2344–2350, 2013. [CrossRef]
  • S. Jonnalagadda, “Effluent treatment using electrochemically bleached seawater? oxidative degradation of pollutants,” Talanta, Vol. 64(1), pp. 18–22, 2004. [CrossRef]
  • K. Yanagase, and T. Yoshinaga, “The Production of Hypochlorite by Direct Electrolysis of Sea Water-Influence of Electrode Gap,” Denki Kagaku Oyobi Kogyo Butsuri Kagaku, Vol. 49(5), pp. 274–280, 1981. [CrossRef]
  • K. Meier, “Hydrogen production with sea water electrolysis using Norwegian offshore wind energy potentials,” International Journal of Energy and Environmental Engineering, Vol. 5(2-3), pp. 124135, 2014. [CrossRef]
  • M. M. Gamil, M. Sugimura, A. Nakadomari, T. Senjyu, H. O. R. Howlader, H. Takahashi, and A. M. Hemeida, “Optimal sizing of a real remote Japanese microgrid with sea water electrolysis plant under time-based demand response programs,” Energies, Vol.13(14), pp. 36663679, 2020. [CrossRef]
  • G. Mannina, A. Cosenza, D. Di Trapani, M. Capodici, and G. Viviani, “Membrane bioreactors for treatment of saline wastewater contaminated by hydrocarbons (diesel fuel): An experimental pilot plant case study,” Chemical Engineering Journal, Vol. 291, pp. 269–278, 2016. [CrossRef]
  • X. Zhang, Z. Guo, C. Zhang, and J. Luan, “Exploration and optimization of two-stage vacuum membrane distillation process for the treatment of saline wastewater produced by natural gas exploitation,” Desalination, Vol. 385, pp.117–125, 2016. [CrossRef]
  • S. Tan, Y. Hou, C. Cui, X. Chen, and W. Li, “Real-time monitoring of biofoulants in a membrane bioreactor during saline wastewater treatment for anti-fouling strategies,” Bioresource Technology, Vol. 224, pp. 183–187, 2017. [CrossRef]
  • K. K. Ng, X. Shi, S. L. Ong, C. F. Lin, and H. Y. Ng, “An innovative of aerobic bio-entrapped salt marsh sediment membrane reactor for the treatment of high-saline pharmaceutical wastewater,” Chemical Engineering Journal, Vol. 295, pp. 317–325, 2016. [CrossRef]
  • K. Xiao, H. Liang, S. Chen, B. Yang, J. Zhang, and J. Li, “Enhanced photoelectrocatalytic degradation of bisphenol A and simultaneous production of hydrogen peroxide in saline wastewater treatment,” Chemosphere, Vol. 222, pp. 141–148, 2019. [CrossRef]
  • S. Cataldo, A. Iannì, V. Loddo, E. Mirenda, L. Palmisano, F. Parrino, and D. Piazzese,” Combination of advanced oxidation processes and active carbons adsorption for the treatment of simulated saline wastewater,” Separation and Purification Technology, Vol. 171, pp. 101–111, 2016. [CrossRef]
  • E. Taheri, M. H. Khiadani, M. M. Amin, M. Nikaeen, and A. Hassanzadeh, “Treatment of saline wastewater by a sequencing batch reactor with emphasis on aerobic granule formation,” Bioresource Technology, Vol.111, pp. 21–26, 2012. [CrossRef]
  • S. I. Abou-Elela, M. M. Kamel, and M. E. Fawzy, “Biological treatment of saline wastewater using a salt-tolerant microorganism,” Desalination, Vol. 250(1), pp. 1–5, 2010. [CrossRef]
  • N. P. Dan, C. Visvanathan, and B. Basu, “Comparative evaluation of yeast and bacterial treatment of high salinity wastewater based on biokinetic coefficients,” Bioresource Technology Vol. 87(1), pp. 51–56, 2003. [CrossRef]
  • H. C. Kim, W. J. Choi, A. N. Chae, J. Park, H. J. Kim, and K. G. Song, “Evaluating integrated strategies for robust treatment of high saline piggery wastewater,” Water Research, Vol. 89, pp. 222–231, 2016. [CrossRef]
  • Y. Zhang, M. Kuroda, S. Arai, F. Kato, D. Inoue, and M. Ike, “Biological treatment of selenate-containing saline wastewater by activated sludge under oxygen-limiting conditions,” Water Research, Vol. 154, pp. 327335, 2019. [CrossRef]
  • N. Salmanikhas, M. Tizghadam, and R. A. Mehrabadi, “Treatment of saline municipal wastewater using hybrid growth system,” Journal of Biological Engineering, Vol. 10(1), pp. 1120, 2016. [CrossRef]
  • A. Goyal, and P. Sharma, “A model on the biological treatment of saline wastewater,” International Journal of Biomathematics, Vol. 10(02), pp. 2134, 2017. [CrossRef]
  • A. R. Picos-Benítez, J. D. López-Hincapié, A. U. Chávez-Ramírez, and A. Rodríguez-García, “Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment,” Water Science and Technology, Vol, 75(5-6), pp. 13511361, 2017. [CrossRef]
  • N. C. Nguyen, S. S. Chen, H. T. Nguyen, Y. H. Chen, H. H. Ngo, W. Guo, and Q. H. Le, “Applicability of an integrated moving sponge biocarrier-osmotic membrane bioreactor MD system for saline wastewater treatment using highly salt-tolerant microorganisms,” Separation and Purification Technology, Vol. 198, pp. 93–99, 2018. [CrossRef]
  • P. Maharaja, J. Magthalin C, Mahesh. M, Lakshmi K Sunkapur, S. Swarnalatha, and G. Sekaran “Treatment of tannery saline wastewater by using effective immobilized protease catalyst produced from salt tolerant Enterococcus faecalis,” Journal of Environmental Chemical Engineering, Vol. 5(2), pp. 2042–2055, 2017. [CrossRef]
  • H. Mirbolooki, R. Amirnezhad, and A. R. Pendashteh, “Treatment of high saline textile wastewater by activated sludge microorganisms,” Journal of Applied Research and Technology, Vol.15(2), pp. 167–172, 2017. [CrossRef]
  • M. C. Tomei, D. M. Angelucci, V. Stazi, and A. J. Daugulis, “On the applicability of a hybrid bioreactor operated with polymeric tubing for the biological treatment of saline wastewater,” Science of The Total Environment, Vol. 599600, pp. 1056–1063, 2017. [CrossRef]
  • T. Onodera, K. Syutsubo, M. Hatamoto, N. Nakahara, and T. Yamaguchi, “Evaluation of cation inhibition and adaptation based on microbial activity and community structure in anaerobic wastewater treatment under elevated saline concentration,” Chemical Engineering Journal, Vol. 325, pp. 442–448, 2017. [CrossRef]
  • J. Liu, S. Shi, X. Ji, B. Jiang, L. Xue, M. Li, and L. Tan, “Performance and microbial community dynamics of electricity-assisted sequencing batch reactor (SBR) for treatment of saline petrochemical wastewater,” Environmental Science and Pollution Research, Vol. 24(21), pp.17556–17565, 2017. [CrossRef]
  • K. Xiao, S. Chen, B. Yang, X. Zhao, G. Yu, and C. Zhu, “Simultaneous achievement of refractory pollutant removal and energy production in the saline wastewater treatment,” Chemical Engineering Journal, Vol. 369, pp. 845853, 2019. [CrossRef]
  • B. Kakavandi, and M. Ahmadi, “Efficient treatment of saline recalcitrant petrochemical wastewater using heterogeneous UV-assisted sono-Fenton process,” Ultrasonics Sonochemistry, Vol. 56, pp. 2536, 2019. [CrossRef]
  • M. Jeddi, F. Karray, S. Loukil, N. Mhiri, M. Ben Abdallah, and S. Sayadi, “Anaerobic biological treatment of industrial saline wastewater: Fixed bed Reactor performance and analysis of the microbial community structure and abundance,” Environmental Technology, Vol. 41, pp. 17151725, 2020. [CrossRef]
  • J. Zhang, H. Yuan, Y. Deng, Y. Zha, I. M. Abu-Reesh, Z. He, and C. Yuan, “Life cycle assessment of a microbial desalination cell for sustainable wastewater treatment and saline water desalination,” Journal of Cleaner Production, Vol. 200, pp. 900–910, 2018. [CrossRef]
  • C. C. Yung, and G. Redzwan “Biological treatment of fish processing saline wastewater for reuse as liquid fertilizer,” Sustainability, Vol. 9(7), pp. 10621078, 2017. [CrossRef]
  • M. T. Jamal, and A. Pugazhendi, “Degradation of petroleum hydrocarbons and treatment of refinery wastewater under saline condition by a halophilic bacterial consortium enriched from marine environment (Red Sea), Jeddah, Saudi Arabia,” Biotech, Vol. 8(6), 2018. [CrossRef]
  • A. Shahata, and T. Urase, “Treatment of saline wastewater by thermophilic membrane bioreactor,” Journal of Water and Environment Technology, Vol. 14(2), pp. 76–81, 2016, [CrossRef]
  • Y. Lu, L. Feng, G. Yang, Q. Yang, X. Zhang, and J. Mu, “Intensification and microbial pathways of simultaneous nitrification-denitrification in a sequencing batch biofilm reactor for seawater-based saline wastewater treatment,” Journal of Chemical Technology and Biotechnology, Vol. 93(9), pp. 2766–2773, 2018. [CrossRef]
  • T. Ahmad, C. Guria, and A. Mandal, “Synthesis, characterization and performance studies of mixed-matrix poly(vinyl chloride)-bentonite ultrafiltration membrane for the treatment of saline oily wastewater,” Process Safety and Environmental Protection, Vol. 116, pp. 703–717, 2018. [CrossRef]
  • H. Eom, J. Kim, S. Kim, and S. S. Lee, “Treatment of saline wastewater containing a high concentration of salt using marine bacteria and aerobic granule sludge,” Journal of Environmental Engineering, Vol. 144(5), pp. 1943–1956, 2018. [CrossRef]
  • Z. Huang, Y. Wang, L. Jiang, B. Xu, Y. Wang, H. Zhao, and W. Zhou, “Mechanism and performance of a self-flocculating marine bacterium in saline wastewater treatment,” Chemical Engineering Journal, Vol. 334, pp. 732–740, 2018. [CrossRef]
  • J. M. Paredez, N. Mladenov, M. B. Galkaduwa, G. M. Hettiarachchi, G. J. Kluitenberg, and S. L. Hutchinson, “A soil column study to evaluate treatment of trace elements from saline industrial wastewater,” Water Science and Technology, Vol.76(10), pp. 2698–2708, 2017. [CrossRef]
  • S. Jorfi, S. Pourfadakari, and M. Ahmadi, “Electrokinetic treatment of high saline petrochemical wastewater: Evaluation and scale-up,” Journal of Environmental Management, Vol. 204, pp. 221–229, 2017. [CrossRef]
  • P. Maharaja, M. Mahesh, C. Chitra, D. Kalaivani, R. Srividya, S. Swarnalatha, and G. Sekaran, “Sequential oxic-anoxic bio reactor for the treatment of tannery saline wastewater using halophilic and filamentous bacteria,” Journal of Water Process Engineering, Vol.18, pp. 47–57, 2017. [CrossRef]
  • D. M. Formentini-Schmitt, M. R. Fagundes-Klen, M. T. Veit, S. M. Palácio, D. E. G. Trigueros, R. Bergamasco, and G. A. P. Mateus, “Potential of the Moringa oleifera saline extract for the treatment of dairy wastewater: application of the response surface methodology,” Environmental Technology, Vol. 40(3), pp. 1–40, 2018. [CrossRef]
  • M. H Doltabadi, H. Alidadi, and M. Davoudi, “Comparative study of cationic and anionic dye removal fromaqueous solutions using sawdust-based adsorbent,” Environmental Progression Sustainable and Energy, Vol. 35, pp. 1078–1090, 2016. [CrossRef]
  • M. Ahmadi, H. Saki, A. Takdastan, M. Dinarvand, S. Jorfi, and B. Ramavandi, “Advanced treatment of saline municipal wastewater by Ruppia maritima : A data set,” Data in Brief, Vol. 13, pp. 545–549, 2017. [CrossRef]
  • M. T. Z. Myint, S. H. Al-Harthi, and J. Dutta. “Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes,” Desalination, Vol. 344, pp. 236242, 2014. [CrossRef]
There are 258 citations in total.

Details

Primary Language English
Subjects Environmental Pollution and Prevention
Journal Section Research Articles
Authors

Justinah Amoko 0000-0001-6641-7747

Ezekiel Oluwaseun Fehintola 0000-0002-0321-3437

Enoch Adekunbi 0009-0005-0279-8487

Lasisi Gbadamosi 0009-0006-3569-3208

Babatunde Ojo 0000-0003-4929-3708

Abidemi Iyewumi Demehin 0000-0002-4267-6143

John Awotunde 0000-0002-3607-4066

Isaiah Oke 0000-0002-7082-7682

Project Number Not Applicable
Publication Date March 31, 2025
Submission Date April 3, 2024
Acceptance Date July 30, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Amoko, J., Fehintola, E. O., Adekunbi, E., Gbadamosi, L., et al. (2025). Performance evaluation of a simple electrochemical treatment model for saline wastewaters: Part A. Environmental Research and Technology, 8(1), 196-223. https://doi.org/10.35208/ert.1462704
AMA Amoko J, Fehintola EO, Adekunbi E, Gbadamosi L, Ojo B, Demehin AI, Awotunde J, Oke I. Performance evaluation of a simple electrochemical treatment model for saline wastewaters: Part A. ERT. March 2025;8(1):196-223. doi:10.35208/ert.1462704
Chicago Amoko, Justinah, Ezekiel Oluwaseun Fehintola, Enoch Adekunbi, Lasisi Gbadamosi, Babatunde Ojo, Abidemi Iyewumi Demehin, John Awotunde, and Isaiah Oke. “Performance Evaluation of a Simple Electrochemical Treatment Model for Saline Wastewaters: Part A”. Environmental Research and Technology 8, no. 1 (March 2025): 196-223. https://doi.org/10.35208/ert.1462704.
EndNote Amoko J, Fehintola EO, Adekunbi E, Gbadamosi L, Ojo B, Demehin AI, Awotunde J, Oke I (March 1, 2025) Performance evaluation of a simple electrochemical treatment model for saline wastewaters: Part A. Environmental Research and Technology 8 1 196–223.
IEEE J. Amoko, E. O. Fehintola, E. Adekunbi, L. Gbadamosi, B. Ojo, A. I. Demehin, J. Awotunde, and I. Oke, “Performance evaluation of a simple electrochemical treatment model for saline wastewaters: Part A”, ERT, vol. 8, no. 1, pp. 196–223, 2025, doi: 10.35208/ert.1462704.
ISNAD Amoko, Justinah et al. “Performance Evaluation of a Simple Electrochemical Treatment Model for Saline Wastewaters: Part A”. Environmental Research and Technology 8/1 (March 2025), 196-223. https://doi.org/10.35208/ert.1462704.
JAMA Amoko J, Fehintola EO, Adekunbi E, Gbadamosi L, Ojo B, Demehin AI, Awotunde J, Oke I. Performance evaluation of a simple electrochemical treatment model for saline wastewaters: Part A. ERT. 2025;8:196–223.
MLA Amoko, Justinah et al. “Performance Evaluation of a Simple Electrochemical Treatment Model for Saline Wastewaters: Part A”. Environmental Research and Technology, vol. 8, no. 1, 2025, pp. 196-23, doi:10.35208/ert.1462704.
Vancouver Amoko J, Fehintola EO, Adekunbi E, Gbadamosi L, Ojo B, Demehin AI, Awotunde J, Oke I. Performance evaluation of a simple electrochemical treatment model for saline wastewaters: Part A. ERT. 2025;8(1):196-223.