Research Article
BibTex RIS Cite
Year 2024, , 55 - 68, 28.03.2024
https://doi.org/10.18185/erzifbed.1302579

Abstract

References

  • [1] Ren, Z., Zhu, B., Xia, J., Ming, M., Zhang, S., Zhi, X., Chen, S., Zhang, W., (2023) High quality factor infrared notch filter with compact electromagnetically induced transparency metamaterial structure, Materials Letters, 343, 134349.
  • [2] Wang, P., Zhong, S., Lin, M., Lin, C., Lin, T., Gao, M., Zhao, C., Li, X., Wu, X., (2022) Signally enhanced piezo-photocatalysis of Bi0.5Na0.5TiO3/MWCNTs composite for degradation of rhodamine B, Chemosphere, 308, 136596.
  • [3] Xu, D., Ma, H., (2021) Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis, Journal of Cleaner Production, 313, 127758.
  • [4] Kong, H., Li, H., Wang, H., Li, S., Lu, B., Zhao, J., Cai, Q., (2023) Fe-Mo-O doping g-C3N4 exfoliated composite for removal of rhodamine B by advanced oxidation and photocatalysis, Applied Surface Science, 610, 155544.
  • [5] Ashok, B., Ramesh, K., Madhu, D., Nagesh, T., Vijaya Kumar, B., Upender, G., (2023) Characterization and photocatalysis of visible light driven Z-scheme Bi2WO6/Bi2MoO6
  • [6] Mittal, H., Al Alili, A., Morajkar, P. P., Alhassan, S. M., (2021) Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye, Journal of Molecular Liquids, 323, 115034.
  • [7] Khumalo, N. P., Nthunya, L. N., De Canck, E., Derese, S., Verliefde, A. R., Kuvarega, A. T., Mamba, B. B., Mhlanga, S. D. Dlamini, D. S., (2019) Congo red dye removal by direct membrane distillation using PVDF/PTFE membrane, Separation and Purification Technology, 211, 578- 586.
  • [8] Menon, P., Anantha Singh, T. S., Pani, N., Nidheesh, P. V., (2021) Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater, Chemosphere, 269, 128739.
  • [9] Tekin, D., Tekin, T., Kiziltas, H., (2020) Synthesis and characterization of TiO2 and Ag/TiO2 thin-film photocatalysts and their efficiency in the photocatalytic degradation kinetics of Orange G dyestuff, 198, 376- 385.
  • [10] Giwa, A., Yusuf, A., Balogun, H. A., Sambudi, N. S., Bilad, M. R., Adeyemi, I., Chakraborty, S., Curcio, S., (2021) Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review, Process Safety and Environmental Protection, 146, 220- 256.
  • [11] Pera-Titus, M., García-Molina, V., Baños, M. A., Giménez, J., Esplugas, S., (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review, Applied Catalysis B: Environmental, 47(4), 219- 256.
  • [12] Caglar, B., Keles Guner, E., Ersoy, S., Caglar, S., Özdemir, A. O., Özdokur, K. V., Doğan, B., İçer, F., Çırak, Ç., (2021) Bi2S3 nanorods decorated on bentonite nanocomposite for enhanced visible-light-driven photocatalytic performance towards degradation of organic dyes, Journal of Alloys and Compounds, 885, 160964.
  • [13] Caglar, B., Keles Guner, E., Özdokur, K. V., Özdemir, A. O. İçer, F., Caglar, S., Doğan, B., Beşer, B. M. Çırak, Ç., Tabak, A., Ersoy, S., (2021) Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction, Journal of Photochemistry and Photobiology A: Chemistry, 418, 113400.
  • [14] Chen, X., Wu, Z., Liu, D., Gao, Z., (2017) Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes, Nanoscale Research Letters, 12(1), 1-10.
  • [15] Tao, C., Jia, Q., Han, B., Ma, Z., (2020) Tunable selectivity of radical generation over TiO2 for photocatalysis, Chemical Engineering Science, 214, 115438.
  • [16] Sahu, K., Choudhary, S., Khan, S. A., Pandey, A., Mohapatra, S., (2019) Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films, Nano-Structures & Nano-Objects, 17, 92- 102.
  • [17] Dey, P. C., Das, R., (2020) Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 231, 118122.
  • [18] Ma, Y., Li, J., Cai, J., Zhong, L., Lang, Y., Ma, Q., (2022) Z-scheme g-C3N4/ZnS heterojunction photocatalyst: One-pot synthesis, interfacial structure regulation, and improved photocatalysis activity for bisphenol A, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 653, 130027.
  • [19] Palanisamy, G., Al-Shaalan, N. H., Bhuvaneswari, K., Bharathi, G., Bharath, G., Pazhanivel, T., Sathishkumar, V. E., Arumugam, M. K., Pasha, S. K. K., Habila, M. A., El- Marghany, A., (2021) An efficient and magnetically recoverable g-C3N4/ZnS/CoFe2O4 nanocomposite for sustainable photodegradation of organic dye under UV–visible light illumination, Environmental Research, 201, 111429.
  • [20] Danish, M., Muneer, M., (2021) Excellent visible-light-driven Ni-ZnS/g-C3N4 photocatalyst for enhanced pollutants degradation performance: Insight into the photocatalytic mechanism and adsorption isotherm, Applied Surface Science, 563, 150262.
  • [21] Yan, Y., Yang, M., Wang, C., Liu, E., Hu, X., Fan, J., (2019) Defected ZnS/bulk g–C3N4 heterojunction with enhanced photocatalytic activity for dyes oxidation and Cr (VI) reduction, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582, 123861.
  • [22] Liu, Y., Ding, S., Xu, J., Zhang, H., Yang, S., Duan, X., Sun, H., Wang, S., (2017) Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core–shell structure for visible-light photocatalytic degradation, Chinese Journal of Catalysis, 38(6), 1052- 1062.
  • [23] Chakrabarti, S., Dutta, B. K., (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, Journal of Hazardous Materials, 112(3), 269- 278.

Photocatalytic Performances of ZnS/g-C3N4 Nanocomposites with Different Mass Ratios

Year 2024, , 55 - 68, 28.03.2024
https://doi.org/10.18185/erzifbed.1302579

Abstract

In this study, we prepared a series of ZnS/graphitic-C3N4 nanocomposites in various mass percentages and morphological properties of all the nanocomposites were examined by utilizing SEM/EDX technique. The photocatalytic performances of ZnS/graphitic-C3N4 nanocomposites were evaluated by degradation of Rhodamine B molecules under visible light. The photocatalytic performances of all nanocomposites under various photocatalyst dosages and initial Rhodamine B concentrations were further investigated for determination of optimal conditions.the obtained results indicated that ZnS/graphitic-C3N4 nanocomposites show almost 2 times higher photocatalaytic performances than pure graphitic-C3N4 and ZnS nanoparticles. The scavenger studies showed that the superoxide radicals had a major role in the photodegradation and the photodegradation of Rhodamine B follows the pseudo-first-order kinetic.

References

  • [1] Ren, Z., Zhu, B., Xia, J., Ming, M., Zhang, S., Zhi, X., Chen, S., Zhang, W., (2023) High quality factor infrared notch filter with compact electromagnetically induced transparency metamaterial structure, Materials Letters, 343, 134349.
  • [2] Wang, P., Zhong, S., Lin, M., Lin, C., Lin, T., Gao, M., Zhao, C., Li, X., Wu, X., (2022) Signally enhanced piezo-photocatalysis of Bi0.5Na0.5TiO3/MWCNTs composite for degradation of rhodamine B, Chemosphere, 308, 136596.
  • [3] Xu, D., Ma, H., (2021) Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis, Journal of Cleaner Production, 313, 127758.
  • [4] Kong, H., Li, H., Wang, H., Li, S., Lu, B., Zhao, J., Cai, Q., (2023) Fe-Mo-O doping g-C3N4 exfoliated composite for removal of rhodamine B by advanced oxidation and photocatalysis, Applied Surface Science, 610, 155544.
  • [5] Ashok, B., Ramesh, K., Madhu, D., Nagesh, T., Vijaya Kumar, B., Upender, G., (2023) Characterization and photocatalysis of visible light driven Z-scheme Bi2WO6/Bi2MoO6
  • [6] Mittal, H., Al Alili, A., Morajkar, P. P., Alhassan, S. M., (2021) Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye, Journal of Molecular Liquids, 323, 115034.
  • [7] Khumalo, N. P., Nthunya, L. N., De Canck, E., Derese, S., Verliefde, A. R., Kuvarega, A. T., Mamba, B. B., Mhlanga, S. D. Dlamini, D. S., (2019) Congo red dye removal by direct membrane distillation using PVDF/PTFE membrane, Separation and Purification Technology, 211, 578- 586.
  • [8] Menon, P., Anantha Singh, T. S., Pani, N., Nidheesh, P. V., (2021) Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater, Chemosphere, 269, 128739.
  • [9] Tekin, D., Tekin, T., Kiziltas, H., (2020) Synthesis and characterization of TiO2 and Ag/TiO2 thin-film photocatalysts and their efficiency in the photocatalytic degradation kinetics of Orange G dyestuff, 198, 376- 385.
  • [10] Giwa, A., Yusuf, A., Balogun, H. A., Sambudi, N. S., Bilad, M. R., Adeyemi, I., Chakraborty, S., Curcio, S., (2021) Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review, Process Safety and Environmental Protection, 146, 220- 256.
  • [11] Pera-Titus, M., García-Molina, V., Baños, M. A., Giménez, J., Esplugas, S., (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review, Applied Catalysis B: Environmental, 47(4), 219- 256.
  • [12] Caglar, B., Keles Guner, E., Ersoy, S., Caglar, S., Özdemir, A. O., Özdokur, K. V., Doğan, B., İçer, F., Çırak, Ç., (2021) Bi2S3 nanorods decorated on bentonite nanocomposite for enhanced visible-light-driven photocatalytic performance towards degradation of organic dyes, Journal of Alloys and Compounds, 885, 160964.
  • [13] Caglar, B., Keles Guner, E., Özdokur, K. V., Özdemir, A. O. İçer, F., Caglar, S., Doğan, B., Beşer, B. M. Çırak, Ç., Tabak, A., Ersoy, S., (2021) Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction, Journal of Photochemistry and Photobiology A: Chemistry, 418, 113400.
  • [14] Chen, X., Wu, Z., Liu, D., Gao, Z., (2017) Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes, Nanoscale Research Letters, 12(1), 1-10.
  • [15] Tao, C., Jia, Q., Han, B., Ma, Z., (2020) Tunable selectivity of radical generation over TiO2 for photocatalysis, Chemical Engineering Science, 214, 115438.
  • [16] Sahu, K., Choudhary, S., Khan, S. A., Pandey, A., Mohapatra, S., (2019) Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films, Nano-Structures & Nano-Objects, 17, 92- 102.
  • [17] Dey, P. C., Das, R., (2020) Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 231, 118122.
  • [18] Ma, Y., Li, J., Cai, J., Zhong, L., Lang, Y., Ma, Q., (2022) Z-scheme g-C3N4/ZnS heterojunction photocatalyst: One-pot synthesis, interfacial structure regulation, and improved photocatalysis activity for bisphenol A, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 653, 130027.
  • [19] Palanisamy, G., Al-Shaalan, N. H., Bhuvaneswari, K., Bharathi, G., Bharath, G., Pazhanivel, T., Sathishkumar, V. E., Arumugam, M. K., Pasha, S. K. K., Habila, M. A., El- Marghany, A., (2021) An efficient and magnetically recoverable g-C3N4/ZnS/CoFe2O4 nanocomposite for sustainable photodegradation of organic dye under UV–visible light illumination, Environmental Research, 201, 111429.
  • [20] Danish, M., Muneer, M., (2021) Excellent visible-light-driven Ni-ZnS/g-C3N4 photocatalyst for enhanced pollutants degradation performance: Insight into the photocatalytic mechanism and adsorption isotherm, Applied Surface Science, 563, 150262.
  • [21] Yan, Y., Yang, M., Wang, C., Liu, E., Hu, X., Fan, J., (2019) Defected ZnS/bulk g–C3N4 heterojunction with enhanced photocatalytic activity for dyes oxidation and Cr (VI) reduction, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582, 123861.
  • [22] Liu, Y., Ding, S., Xu, J., Zhang, H., Yang, S., Duan, X., Sun, H., Wang, S., (2017) Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core–shell structure for visible-light photocatalytic degradation, Chinese Journal of Catalysis, 38(6), 1052- 1062.
  • [23] Chakrabarti, S., Dutta, B. K., (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, Journal of Hazardous Materials, 112(3), 269- 278.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Bilge Doğan 0000-0001-7552-3461

Agah Oktay Özdemir 0000-0003-4488-746X

Bülent Çağlar 0000-0002-6087-3685

Eda Keleş Güner 0000-0002-4421-1315

Early Pub Date March 27, 2024
Publication Date March 28, 2024
Published in Issue Year 2024

Cite

APA Doğan, B., Özdemir, A. O., Çağlar, B., Keleş Güner, E. (2024). Photocatalytic Performances of ZnS/g-C3N4 Nanocomposites with Different Mass Ratios. Erzincan University Journal of Science and Technology, 17(1), 55-68. https://doi.org/10.18185/erzifbed.1302579