Year 2024,
, 52 - 70, 31.12.2024
Büşra Karkar
,
İlkyaz Patır
,
Elif Tülek
,
Serenay Eyüboğlu
,
Saliha Şahin
Project Number
FHIZ–2023–1707
References
- [1] Aboulfazli, F., Shori, A. B., Baba, A. S., (2016) Effects of the replacement of cow milk with vegetable milk on probiotics and nutritional profile of fermented ice cream, LWT- Food Science and Technology, 70, 261–270.
- [2] Jaddu, S., Katam, S., (2018) Hub of health: Nutraceuticals and functional foods, Journal of Pharmacognosy and Phytochemistry, 7(2), 1327–1331.
- [3] Sengsaengthong, S., Oonsivilai, R., (2019) Effect of microencapsulation of Lactobacillus sp. 21C2-10 isolated from cassava pulp on physicochemical, sensorial and microbiological characteristics of ice cream, International Food Research Journal, 26(2), 585–594
- [4] Castillo M. D., Iriondo-DeHond A., Martirosyan D. M., (2018) Are functional foods essential for sustainable health?, Annals of Nutrition and Food Science, 2(1), 1015.
- [5] Açu, M., Kinik, Ö., Yerlikaya, O., (2017) Functional properties of probiotic ice cream produced from goat’s milk, Carpathian Journal of Food Science and Technology, 9(4), 86–100.
- [6] Homayouni, A., Azizi, A., Ehsani, M. R., Yarmand, M. S., Razavi, S. H., (2008) Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream, Food Chemistry, 111, 50–55.
- [7] Niamah, A. K., Al-Manhel, A. J., Al-Sahlany, S. T. G., (2018) Effect microencapsulation of Saccharomyces boulardii on viability of yeast in vitro and ice cream, Carpathian Journal of Food Science and Technology, 10(3), 100–107.
- [8] Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. C., Verbeke, K., Reid, G., (2017) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics, Nature Reviews Gastroenterology & Hepatology, 14(8), 491–502.
- [9] Markowiak, P., Śliżewska, K., (2017) Effects of probiotics, prebiotics, and synbiotics on human health, Nutrients, 9(9), 1–30.
- [10] Yılmaz-Ersan, L., Kurdal, E., (2014) The production of Set-Type-Bio-Yoghurt with commercial probiotic culture, International Journal of Chemical Engineering and Applications, 5(5), 402–408.
[11] Santiago-Lόpez, L., Hernandez-Mendoza, A., Garcia, H. S., Mata-Haro, V., Vallejo‐ Cordoba, B., Gonzalez-Cordova, A. F., (2015) The effects of consuming probiotic-fermented milk on the immune system: A review of scientific evidence, International Journal of Dairy Technology, 68(2), 153–303.
[12] Champagne, C. P., Raymond, Y., Guertin, N., Belanger, G., (2015) Effects of storage conditions, microencapsulation and inclusion in chocolate particles on the stability of probiotic bacteria in ice cream, International Dairy Journal, 47, 109–117.
[13] Chaikham, P., Rattanasena, P., (2017) Combined effects of low-fat ice cream supplemented with probiotics on colon microfloral communities and their metabolites during fermentation in a human gut reactor, Food Bioscience, 17, 35–41.
- 6
[14] Cruz, A. G., Antunes, A. E. C., Sousa, A. L. O. P., Faria, J. A. F., Saad, S. M. I., (2009) Ice-cream as a probiotic food carrier, Food Research International, 42, 1233–1239.
- [15] Akalın, A. S., Erışır, D., (2008) Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low-fat probiotic ice cream, Journal of Food Scıence, 73(4), 184–188.
- [16] Corona‐Hernandez, R. I., Álvarez‐Parrilla, E., Lizardi‐Mendoza, J., Islas‐Rubio, A. R., de la Rosa, L. A., Wall‐Medrano, A., (2013) Structural stability and viability of microencapsulated probiotic bacteria: A review, Comprehensive Reviews in Food Science and Food Safety, 12(6), 614–628.
- [17] Meena, K. K., Taneja, N. K., Ojha, A., Meena, S., (2023) Application of spray-drying and freeze-drying for microencapsulation of lactic acid bacteria: A review, Annals of Phytomedicine, 12(1), 706–716.
- [18] Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., Bugarski, B., (2011) An overview of encapsulation technologies for food applications, Procedia Food Science, 1, 1806–1815.
- [19] López-Orozco, R., Hernández-Ceballos, M. Á., Galán, C., García-Mozo, H., (2020) Atmospheric pathways and distance range analysis of Castanea pollen transport in southern Spain, Forests, 11(10), 1092.
- [20] Santos, M. J., Pinto, T., Vilela, A., (2022) Sweet chestnut (Castanea sativa Mill.) nutritional and phenolic composition interactions with chestnut flavor physiology, Foods, 11(24), 4052.
- [21] Payne, J. A., Jaynes, R. A., Kays, S. J., (1983) Chinese chestnut production in the United States: Practice, problems and possible solutions, Economic Botany, 37(2), 187–200.
[22] Suna, S., Avşar, B., Koçer, S., Çopur, Ö. U., (2021) Effects of different pretreatments on the physicochemical characteristics and quality criteria of chestnut (Castanea sativa Mill.) pickle: A new value‐added product, Journal of Food Processing and Preservation, 45(7), e15669.
- [23] Ozcan, T., Yilmaz-Ersan, L., Akpinar-Bayizit, A., Delikanli, B., (2017) Antioxidant properties of probiotic fermented milk supplemented with chestnut flour (Castanea sativa Mill), Journal of Food Processing & Preservation, 41, 1–9.
- [24] Usta-Gorgun, B., Yilmaz-Ersan, L., Sahin, S., (2022) Optimization of formulation and process conditions of chestnut-based functional beverage using response surface methodology, Journal of Food Science and Technology-Mysore, 59, 3210–3219.
- [25] Yilmaz‐Ersan, L., Ozcan, T., Akpinar‐Bayizit, A., Usta‐Gorgun, B., Keser, G., Ciniviz, M., Demiray‐Teymuroglu, M., (2023) The probiotic chestnut‐based dairy matrix: Influence on the metabolomic formation and the nutritional quality, International Journal of Dairy Technology, 76(4), 895–908.
- [26] Karkar, B., Şahin, S., Yılmaz-Ersan, L., Akça, B., Güneş, M. E., Özakın, C., (2024) Encapsulation of Lacticaseibacillus casei and Lactobacillus acidophilus using Elaeagnus angustifolia L. flour as encapsulating material by emulsion method, Food Science & Nutrition, 00, 1–16.
[27] Maleki, O., Khaledabad, M. A., Amiri, S., Asl, A. K., Makouie, S., (2020) Microencapsulation of Lactobacillus rhamnosus ATCC 7469 in whey protein isolate- crystalline nanocellulose-inulin composite enhanced gastrointestinal survivability, LWT, 126, 109224.
- [28] Chandramouli, V., Kalasapathy, K., Peiris, P., Jones, M., (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions, Journal of Microbiological Methods, 56, 27–35.
- [29] Tharmaraj, N., Shah, N. P., (2003) Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus and Propionibacteria, Journal of Dairy Science, 86(7), 2288-2296.
- [30] Gibson, G. R., Roberfroid, M. B., (1995) Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics, Journal of Nutrition, 125(6), 1401–1412.
- [31] International, 144
Food Research
Pinto, D., de la Luz Cádiz-Gurrea, M., Vallverdú-Queralt, A., Delerue-Matos, C.,
Rodrigues, F., (2021) Castanea sativa shells: A review on phytochemical composition,
bioactivity and waste management approaches for industrial valorization,
, 110364.
Improving Viability in the in vitro Gastrointestinal System by Encapsulation of Lacticaseibacillus paracasei Probiotic Bacteria on Chestnut (Castanea sativa Mill.) Fruit
Year 2024,
, 52 - 70, 31.12.2024
Büşra Karkar
,
İlkyaz Patır
,
Elif Tülek
,
Serenay Eyüboğlu
,
Saliha Şahin
Abstract
In this study, Lacticaseibacillus paracasei probiotic bacteria were encapsulated by freeze-drying (lyophilization) method using three different parts of chestnut fruit: kernel, inner, and outer shell. The encapsulation efficiencies of Lacticaseibacillus paracasei probiotic bacteria were determined as 85.76±0.12%, 81.21±0.02%, and 79.38±0.05%, respectively. FTIR and SEM characterized the structure and surface of the capsules. In addition, the viability of free and encapsulated bacteria was analyzed during in vitro gastrointestinal digestion conditions. During in vitro gastrointestinal digestion, free bacteria lost their viability at 90 min of gastric digestion, while encapsulated probiotic bacteria were able to reach the intestinal environment. Thus, it is envisaged that new products can be developed by using Lacticaseibacillus paracasei loaded capsules as a natural additive in food products.
Ethical Statement
There are no ethical issues regarding the publication of this study.
Supporting Institution
Scientific Research Projects Foundation (BAP)
Project Number
FHIZ–2023–1707
Thanks
The authors thank the Scientific Research Projects Foundation (BAP) of the Bursa Uludağ University of Türkiye (Project No. FHIZ–2023–1707) for supporting this study.
References
- [1] Aboulfazli, F., Shori, A. B., Baba, A. S., (2016) Effects of the replacement of cow milk with vegetable milk on probiotics and nutritional profile of fermented ice cream, LWT- Food Science and Technology, 70, 261–270.
- [2] Jaddu, S., Katam, S., (2018) Hub of health: Nutraceuticals and functional foods, Journal of Pharmacognosy and Phytochemistry, 7(2), 1327–1331.
- [3] Sengsaengthong, S., Oonsivilai, R., (2019) Effect of microencapsulation of Lactobacillus sp. 21C2-10 isolated from cassava pulp on physicochemical, sensorial and microbiological characteristics of ice cream, International Food Research Journal, 26(2), 585–594
- [4] Castillo M. D., Iriondo-DeHond A., Martirosyan D. M., (2018) Are functional foods essential for sustainable health?, Annals of Nutrition and Food Science, 2(1), 1015.
- [5] Açu, M., Kinik, Ö., Yerlikaya, O., (2017) Functional properties of probiotic ice cream produced from goat’s milk, Carpathian Journal of Food Science and Technology, 9(4), 86–100.
- [6] Homayouni, A., Azizi, A., Ehsani, M. R., Yarmand, M. S., Razavi, S. H., (2008) Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream, Food Chemistry, 111, 50–55.
- [7] Niamah, A. K., Al-Manhel, A. J., Al-Sahlany, S. T. G., (2018) Effect microencapsulation of Saccharomyces boulardii on viability of yeast in vitro and ice cream, Carpathian Journal of Food Science and Technology, 10(3), 100–107.
- [8] Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. C., Verbeke, K., Reid, G., (2017) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics, Nature Reviews Gastroenterology & Hepatology, 14(8), 491–502.
- [9] Markowiak, P., Śliżewska, K., (2017) Effects of probiotics, prebiotics, and synbiotics on human health, Nutrients, 9(9), 1–30.
- [10] Yılmaz-Ersan, L., Kurdal, E., (2014) The production of Set-Type-Bio-Yoghurt with commercial probiotic culture, International Journal of Chemical Engineering and Applications, 5(5), 402–408.
[11] Santiago-Lόpez, L., Hernandez-Mendoza, A., Garcia, H. S., Mata-Haro, V., Vallejo‐ Cordoba, B., Gonzalez-Cordova, A. F., (2015) The effects of consuming probiotic-fermented milk on the immune system: A review of scientific evidence, International Journal of Dairy Technology, 68(2), 153–303.
[12] Champagne, C. P., Raymond, Y., Guertin, N., Belanger, G., (2015) Effects of storage conditions, microencapsulation and inclusion in chocolate particles on the stability of probiotic bacteria in ice cream, International Dairy Journal, 47, 109–117.
[13] Chaikham, P., Rattanasena, P., (2017) Combined effects of low-fat ice cream supplemented with probiotics on colon microfloral communities and their metabolites during fermentation in a human gut reactor, Food Bioscience, 17, 35–41.
- 6
[14] Cruz, A. G., Antunes, A. E. C., Sousa, A. L. O. P., Faria, J. A. F., Saad, S. M. I., (2009) Ice-cream as a probiotic food carrier, Food Research International, 42, 1233–1239.
- [15] Akalın, A. S., Erışır, D., (2008) Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low-fat probiotic ice cream, Journal of Food Scıence, 73(4), 184–188.
- [16] Corona‐Hernandez, R. I., Álvarez‐Parrilla, E., Lizardi‐Mendoza, J., Islas‐Rubio, A. R., de la Rosa, L. A., Wall‐Medrano, A., (2013) Structural stability and viability of microencapsulated probiotic bacteria: A review, Comprehensive Reviews in Food Science and Food Safety, 12(6), 614–628.
- [17] Meena, K. K., Taneja, N. K., Ojha, A., Meena, S., (2023) Application of spray-drying and freeze-drying for microencapsulation of lactic acid bacteria: A review, Annals of Phytomedicine, 12(1), 706–716.
- [18] Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., Bugarski, B., (2011) An overview of encapsulation technologies for food applications, Procedia Food Science, 1, 1806–1815.
- [19] López-Orozco, R., Hernández-Ceballos, M. Á., Galán, C., García-Mozo, H., (2020) Atmospheric pathways and distance range analysis of Castanea pollen transport in southern Spain, Forests, 11(10), 1092.
- [20] Santos, M. J., Pinto, T., Vilela, A., (2022) Sweet chestnut (Castanea sativa Mill.) nutritional and phenolic composition interactions with chestnut flavor physiology, Foods, 11(24), 4052.
- [21] Payne, J. A., Jaynes, R. A., Kays, S. J., (1983) Chinese chestnut production in the United States: Practice, problems and possible solutions, Economic Botany, 37(2), 187–200.
[22] Suna, S., Avşar, B., Koçer, S., Çopur, Ö. U., (2021) Effects of different pretreatments on the physicochemical characteristics and quality criteria of chestnut (Castanea sativa Mill.) pickle: A new value‐added product, Journal of Food Processing and Preservation, 45(7), e15669.
- [23] Ozcan, T., Yilmaz-Ersan, L., Akpinar-Bayizit, A., Delikanli, B., (2017) Antioxidant properties of probiotic fermented milk supplemented with chestnut flour (Castanea sativa Mill), Journal of Food Processing & Preservation, 41, 1–9.
- [24] Usta-Gorgun, B., Yilmaz-Ersan, L., Sahin, S., (2022) Optimization of formulation and process conditions of chestnut-based functional beverage using response surface methodology, Journal of Food Science and Technology-Mysore, 59, 3210–3219.
- [25] Yilmaz‐Ersan, L., Ozcan, T., Akpinar‐Bayizit, A., Usta‐Gorgun, B., Keser, G., Ciniviz, M., Demiray‐Teymuroglu, M., (2023) The probiotic chestnut‐based dairy matrix: Influence on the metabolomic formation and the nutritional quality, International Journal of Dairy Technology, 76(4), 895–908.
- [26] Karkar, B., Şahin, S., Yılmaz-Ersan, L., Akça, B., Güneş, M. E., Özakın, C., (2024) Encapsulation of Lacticaseibacillus casei and Lactobacillus acidophilus using Elaeagnus angustifolia L. flour as encapsulating material by emulsion method, Food Science & Nutrition, 00, 1–16.
[27] Maleki, O., Khaledabad, M. A., Amiri, S., Asl, A. K., Makouie, S., (2020) Microencapsulation of Lactobacillus rhamnosus ATCC 7469 in whey protein isolate- crystalline nanocellulose-inulin composite enhanced gastrointestinal survivability, LWT, 126, 109224.
- [28] Chandramouli, V., Kalasapathy, K., Peiris, P., Jones, M., (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions, Journal of Microbiological Methods, 56, 27–35.
- [29] Tharmaraj, N., Shah, N. P., (2003) Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus and Propionibacteria, Journal of Dairy Science, 86(7), 2288-2296.
- [30] Gibson, G. R., Roberfroid, M. B., (1995) Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics, Journal of Nutrition, 125(6), 1401–1412.
- [31] International, 144
Food Research
Pinto, D., de la Luz Cádiz-Gurrea, M., Vallverdú-Queralt, A., Delerue-Matos, C.,
Rodrigues, F., (2021) Castanea sativa shells: A review on phytochemical composition,
bioactivity and waste management approaches for industrial valorization,
, 110364.