Research Article
BibTex RIS Cite

(s,t)-Modified Pell Sequence and Its Matrix Representation

Year 2019, , 863 - 873, 31.08.2019
https://doi.org/10.18185/erzifbed.494358

Abstract

In this paper, we investigate
a generalization of modified Pell sequence, which is called (s,t)
-modified Pell sequence. By
considering this sequence, we define the matrix sequence whose elements are (s,t)
-modified Pell numbers.
Furthermore, we obtain Binet formulas, the generating functions and some sums
formulas of these sequence. Finally, we give some relationships between (s,t)
-Pell and (s,t)-modified Pell matrix
sequences.

References

  • Benjamin, A.T., Plott, S.S., Sellers, J.A. 2008. “Tiling proofs of recent sum identities involving Pell numbers”, Annals of Combinatorics, 12, 271-278.
  • Bicnell, M. 1975. “A primer on the Pell sequence and related sequences”, The Fib. Quart., 13(4), 345-349.
  • Civciv, H., Türkmen, R. 2008a. “On the (s,t)-Fibonacci and Fibonacci matrix sequence”, Ars Combinatoria, 87, 161-173.
  • Civciv, H., Türkmen, R. 2008b. “Notes on the (s,t)-Lucas and Lucas matrix sequences”, Ars Combinatoria, 89, 271-285.
  • Guleç, H.H., Taskara, N. 2012. “On the (s,t)-Pell and (s,t)-Pell-Lucas sequences and their matrix representations”, Applied Mathematics Letters, 25(10), 1554-1559.
  • Horadam, A.F., Filipponi, P. 1995. “Pell and Pell-Lucas numbers with real subscripts”, The Fib. Quart., 33(5), 398-406.
  • Koshy, T. 2001. “Fibonacci and Lucas numbers with applications”, John Wiley and Sons Inc., NY.
  • Stakhoy, A., Rozin, B. 2006. “Theory of Binet formulas for Fibonacci and Lucas p-numbers”, Solition & Fractals, 27(5), 1162-1177.

(s,t)-Modified Pell Dizisi ve Matris Gösterimi

Year 2019, , 863 - 873, 31.08.2019
https://doi.org/10.18185/erzifbed.494358

Abstract

Bu çalışmada, (s,t)-modified Pell dizisi olarak
adlandırılan modified Pell dizisinin bir genellemesini araştırdık. Bu diziyi
dikkate alarak elemanları (s,t)
-modified Pell sayıları olan
matris dizisini tanımladık. Ayrıca, bu dizilerin üreteç fonksiyonlarını, Binet
formüllerini ve bazı toplam formüllerini elde ettik. Son olarak, (s,t)
-Pell ve (s,t)-modified Pell matris dizileri
arasında bazı ilişkiler verdik.

References

  • Benjamin, A.T., Plott, S.S., Sellers, J.A. 2008. “Tiling proofs of recent sum identities involving Pell numbers”, Annals of Combinatorics, 12, 271-278.
  • Bicnell, M. 1975. “A primer on the Pell sequence and related sequences”, The Fib. Quart., 13(4), 345-349.
  • Civciv, H., Türkmen, R. 2008a. “On the (s,t)-Fibonacci and Fibonacci matrix sequence”, Ars Combinatoria, 87, 161-173.
  • Civciv, H., Türkmen, R. 2008b. “Notes on the (s,t)-Lucas and Lucas matrix sequences”, Ars Combinatoria, 89, 271-285.
  • Guleç, H.H., Taskara, N. 2012. “On the (s,t)-Pell and (s,t)-Pell-Lucas sequences and their matrix representations”, Applied Mathematics Letters, 25(10), 1554-1559.
  • Horadam, A.F., Filipponi, P. 1995. “Pell and Pell-Lucas numbers with real subscripts”, The Fib. Quart., 33(5), 398-406.
  • Koshy, T. 2001. “Fibonacci and Lucas numbers with applications”, John Wiley and Sons Inc., NY.
  • Stakhoy, A., Rozin, B. 2006. “Theory of Binet formulas for Fibonacci and Lucas p-numbers”, Solition & Fractals, 27(5), 1162-1177.
There are 8 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Nusret Karaaslan

Tülay Yağmur

Publication Date August 31, 2019
Published in Issue Year 2019

Cite

APA Karaaslan, N., & Yağmur, T. (2019). (s,t)-Modified Pell Sequence and Its Matrix Representation. Erzincan University Journal of Science and Technology, 12(2), 863-873. https://doi.org/10.18185/erzifbed.494358