Research Article
BibTex RIS Cite

Products Of Element Orders In Finite Groups

Year 2020, , 1112 - 1115, 31.12.2020
https://doi.org/10.18185/erzifbed.726807

Abstract

The aim of this note is to investigate the products of element orders in finite groups and to give some properties
of such products. Let phi′(G) denote the product of element orders of a finite group G. As an immediate
consequence, by using a different approach, we proved that phi′(G) < phi'′(G) where G is a non-cyclic finite
group and C is a cyclic group of the same order.

References

  • Amiri, H., Amiri, S.M.J. and Isaacs, I.M. 2009. Sums of element orders in finite groups, Comm. Algebra. Volume 37, 2978-2980.
  • Garonzi, M. and Patassini, M. 2017. Inequality detecting structural properties of a finite group, Comm. Algebra, 45, 677-687.
  • Herzog, M., Longobardi, P. And Maj, M. 2018. An exact upper bound for sums of element orders in non-cyclic finite groups, J. Pure and Applied Algebra, 222 (7), 1628-1642.
  • Isaacs, I.M. (2018). Finite group theory, Graduate Studies in Mathematics, 92, American Mathematical Society, Providence, RI.
  • Mansuroğlu, N. 2018. Sums of element orders in symmetric groups, Afyon Kocatepe University Journal of Science and Engineering, 18, 884-887.
  • Robinson, D.J.S. (1996). A Course in the Theory of Groups, 2nd edition, SpringerVerlag, New York.
  • Tarnauceanu, M. (2018). A note on theproduct of element orders of finite abelian groups, arXiv:1805.09310vl

Sonlu Grupların Eleman Mertebelerinin Çarpımı

Year 2020, , 1112 - 1115, 31.12.2020
https://doi.org/10.18185/erzifbed.726807

Abstract

Bu çalışmanın amacı sonlu grupların eleman mertebelerinin çarpımlarını araştırmak ve bu çarpımların bazı
özelliklerini vermektir. Bir sonlu grup G nin eleman mertebelerinin çarpımı phi′(G) olsun. Farklı bir yaklaşım
kullanarak aynı mertebeye sahip G devirli olmayan grup ve C devirli grup olmak üzere phi′(G) < phi′(C) olduğu
ispatlandı.

References

  • Amiri, H., Amiri, S.M.J. and Isaacs, I.M. 2009. Sums of element orders in finite groups, Comm. Algebra. Volume 37, 2978-2980.
  • Garonzi, M. and Patassini, M. 2017. Inequality detecting structural properties of a finite group, Comm. Algebra, 45, 677-687.
  • Herzog, M., Longobardi, P. And Maj, M. 2018. An exact upper bound for sums of element orders in non-cyclic finite groups, J. Pure and Applied Algebra, 222 (7), 1628-1642.
  • Isaacs, I.M. (2018). Finite group theory, Graduate Studies in Mathematics, 92, American Mathematical Society, Providence, RI.
  • Mansuroğlu, N. 2018. Sums of element orders in symmetric groups, Afyon Kocatepe University Journal of Science and Engineering, 18, 884-887.
  • Robinson, D.J.S. (1996). A Course in the Theory of Groups, 2nd edition, SpringerVerlag, New York.
  • Tarnauceanu, M. (2018). A note on theproduct of element orders of finite abelian groups, arXiv:1805.09310vl
There are 7 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Nil Mansuroğlu 0000-0002-6400-2115

Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Mansuroğlu, N. (2020). Products Of Element Orders In Finite Groups. Erzincan University Journal of Science and Technology, 13(3), 1112-1115. https://doi.org/10.18185/erzifbed.726807