Research Article
BibTex RIS Cite

Quantum chemical computational studies on 4-(1-Aminoethyl)pyridine

Year 2021, , 751 - 760, 31.08.2021
https://doi.org/10.18185/erzifbed.906280

Abstract

The density functional theory (DFT) method combined with B3LYP and B3PW91 hybrid functional were utilized for geometrical optimization, vibrational frequencies and electronic spectral study. The B3LYP and B3PW91 levels of the time dependent-DFT with 6–311+G(d, p) basis set have been used to determine the highest occupied molecular orbital (HOMO) – the lowest unoccupied molecular orbital (LUMO) energies, absorption wavelengths, and electronic properties (total energy and energy gap) of 4-(1-aminoethyl)pyridine. Global reactivity descriptors like ionization potential, chemical hardness and electron affinity, etc. have been estimated using the B3LYP/6–311+G (d, p) and B3PW91/6–311+G (d, p) methods. The effect of the solvent has been simulated using the integral equation formalism-polarized continuum model (IEF-PCM).

References

  • Bhatt A. H., Parekh M. H., Parikh K. A. And Parikh A .R. (2001). Synthesis of pyrazolines and cyanopyridines as potential antimicrobial agents. Indian Journal of. Chemistry., 40(6), 57-61.
  • Dennington R. (2009). GaussView Version 5, Roy, Todd Keith and John Millam, Semichem Inc., Shawnee Mission K.S.
  • Doshi R., Kagathara P. and Parekh H. (1999). Synthesis and biological evaluation of some novel isoxazoles and cyanopyridines, a new class of potential anti-tubercular agents. Ind. J. Chem., 38, 348–352.
  • Dubey P. K., Chowdary K. S., Ramesh B. and Prasada Reddy P. V. V. (2010). Na2S2O4: A Versatile Reagent for the One-Pot Synthesis of 2-Aryl-1H-imidazo[4,5-c]pyridines from 4-Amino-3-nitropyridine and Aldehydes via Reductive Cyclization. Synthetic Communications, 40, 697-708. https://doi.org/10.1080/00397910903011345
  • Dursun Karaağaç D., Kürkçüoğlu G. S., Şenyel M., Şahin O. (2017). Synthesis, spectroscopic, thermal and structural properties of 4-(2-aminoethyl)pyridinium tetracyanometallate(II) complexes. Journal of Molecular Structure, 1136, 281-287. https://doi.org/10.1016/j.molstruc.2017.02.013
  • Frisch M.J. et al., 2009. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT.
  • Gorelsky S. I., 2010. SWizard Program Revision 4.5 University of Ottawa, Ottawa, Canada, http://www.sg.chem.net/ (2010).
  • Hishmat O. H., Galil F. M. A. and Farrag D. S. (1990). Synthesis and antimicrobial activity of new benzofuranylpyridine derivatives. Pharmazie, 45, 793–795.
  • Huang R., Wallqvist A. and Covell D. G. (2005). Anticancer metal compounds in NCI's tumor-screening database: putative mode of action. Biochem. Pharmacol., 69(7), 1009-1039. https://doi.org/10.1016/j.bcp.2005.01.001
  • Karaağaç D., Kürkçüoğlu G. S., Şenyel M., Hökelek T. (2017). Syntheses, structural characterization and spectroscopic studies of cadmium(II)-metal(II) cyanide complexes with 4-(2-aminoethyl)pyridine. Journal of Molecular Structure,1130, 80-88, https://doi.org/10.1016/j.molstruc.2016.09.089
  • Karaağaç D., Kürkçüoğlu G. S., Şenyel M., Şahin O. (2017). Synthesis, spectroscopic, thermal and structural properties of 4-(2-aminoethyl)pyridinium tetracyanometallate(II) complexes. Journal of Molecular Structure, 1136, 281-287. https://doi.org/10.1016/j.molstruc.2017.02.013
  • Keogh M., Sedehizadeh S. and Maddison P. C. (2011). Treatment for Lambert‐Eaton myasthenic syndrom. Database of Systematic Reviews, 2, 1-21. https://doi.org/10.1002/14651858.CD003279.pub3
  • Lee C., Yang W. and Parr R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev., B 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
  • Middleton R. W. and Wimberley D. G. (1980). Synthesis of 2‐amino‐3‐benzoylphenylacetic acid. J. Heterocycl. Chem. 17(8), 1663-1664.
  • Patrick G. L. and Kinsmar O. S. (1996). Synthesis and antifungal activity of novel aza-d--homosteroids, hydroisoquinolines, pyridines and dihydropyridines. J. Med. Chem., 31, 615–624. https://doi.org/10.1016/0223-5234(96)89557-2
  • Perdew J. P., Burke K. And Wang Y. (1996). Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533-16539. https://doi.org/10.1103/PhysRevB.54.16533
  • Pizarro A. M. and Sadler P. J. (2009). Unusual DNA binding modes for metal anticancer complexes. Biochimie, 91(10), 1198-211. https://doi.org/10.1016/j.biochi.2009.03.017
  • Sankpal U. T., Pius H., Khan M., Shukoor M. I., Maliakal P., Lee C .M., Abdelrahim M., Connelly S. F. and Basha R. (2012). Environmental factors in causing human cancers: emphasis on tumorigenesis. Tumor Biol., 33 (5), 1265–1274. https://doi.org/10.1007/s13277-012-0413-4
  • Sedehizadeh S., Keogh M. and Maddison P. (2012). The Use of Aminopyridines in Neurological Disorders. Clinical Neuropharmacol, 35, 191-200. doi: 10.1097/WNF.0b013e31825a68c5
  • Smith R. C. F., Emmen H. H., Bertelsmann F. W., Kulig B. M., van Loenen A. C. and Polman C. H. (1994). The effects of 4-aminopyridine on cognitive function in patients with multiple sclerosis: A pilot study. Neurology, 44(9), 1701- 1705. https://doi.org/10.1212/WNL.44.9.1701
  • Strupp M., Teufel J., Zwergal A., Schniepp R., Khodakhah K. and Feil K. (2017). Aminopyridines for the treatment of neurologic disorders. Neurol Clin Pract.,7(1), 65-76. https://doi.org/10.1212/CPJ.0000000000000321
  • Szakacs G., Paterson J. K., Ludwig J. A., Booth-Genthe C. and Gottesman M. M. (2006). Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 5, 219–234. https://doi.org/10.1038/nrd1984
  • Topaçlı A. and Bayarı S. (1999).Urey-Bradley force field of 4-ethylpyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,55(7–8),1389-1394. https://doi.org/10.1016/S1386-1425(98)00302-3
  • Vural H., Kara M., İdil Ö. (2016). Experimental and computational study of the structure and spectroscopic properties of 1′,3′-Dihydrospiro[cyclohexane-1,2′-[2H]imidazo[4,5-b]pyridine]. Journal of Molecular Structure,1125,662-670, https://doi.org/10.1016/j.molstruc.2016.07.065
  • Vural H., Ozdogan T. and Orbay M (2019). DFT investigation of the electronic structure and nonlinear optic properties (NLO) of 3-amino-4-(Boc-amino)pyridine. Indian J Phys., 93, 1113–1122. https://doi.org/10.1007/s12648-019-01391-0

4-(1-Aminoetil)piridin’in Kuantum Kimyasal Hesaplamaları Üzerine Çalışmalar

Year 2021, , 751 - 760, 31.08.2021
https://doi.org/10.18185/erzifbed.906280

Abstract

Geometrik optimizasyonu, titreşim frekansları ve elektronik spektral çalışma için yoğunluk fonksiyonel teorisinin (DFT) B3LYP ve B3PW91 hibrit fonksiyonelleri kullanıldı. 4-(1-aminoetil) piridin’in en yüksek dolu moleküler orbital (HOMO) ve en düşük boş moleküler orbitallerin (LUMO) enerjileri, absorbsiyon dalga boylarının ve elektronik özelliklerinin (toplam enerji, enerji aralığı vb.) hesaplanmasında zamana bağlı-DFT ile B3LYP ve B3PW91 ve 6–311+G(d, p) baz seti kullanıldı. İyonizasyon potansiyeli, kimyasal sertlik ve elektron afinitesi gibi global reaktiflik tanımlayıcıları B3LYP/6–311+G (d, p) ve B3PW91/6–311+G (d, p) yöntemleri kullanılarak tahmin edilmiştir. Çözücü etkisi zamana bağlı yoğunluk fonksiyonel teorisine sürekli polarizasyon modeli (IEF-PCM) uygulanarak hesaplandı.


References

  • Bhatt A. H., Parekh M. H., Parikh K. A. And Parikh A .R. (2001). Synthesis of pyrazolines and cyanopyridines as potential antimicrobial agents. Indian Journal of. Chemistry., 40(6), 57-61.
  • Dennington R. (2009). GaussView Version 5, Roy, Todd Keith and John Millam, Semichem Inc., Shawnee Mission K.S.
  • Doshi R., Kagathara P. and Parekh H. (1999). Synthesis and biological evaluation of some novel isoxazoles and cyanopyridines, a new class of potential anti-tubercular agents. Ind. J. Chem., 38, 348–352.
  • Dubey P. K., Chowdary K. S., Ramesh B. and Prasada Reddy P. V. V. (2010). Na2S2O4: A Versatile Reagent for the One-Pot Synthesis of 2-Aryl-1H-imidazo[4,5-c]pyridines from 4-Amino-3-nitropyridine and Aldehydes via Reductive Cyclization. Synthetic Communications, 40, 697-708. https://doi.org/10.1080/00397910903011345
  • Dursun Karaağaç D., Kürkçüoğlu G. S., Şenyel M., Şahin O. (2017). Synthesis, spectroscopic, thermal and structural properties of 4-(2-aminoethyl)pyridinium tetracyanometallate(II) complexes. Journal of Molecular Structure, 1136, 281-287. https://doi.org/10.1016/j.molstruc.2017.02.013
  • Frisch M.J. et al., 2009. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT.
  • Gorelsky S. I., 2010. SWizard Program Revision 4.5 University of Ottawa, Ottawa, Canada, http://www.sg.chem.net/ (2010).
  • Hishmat O. H., Galil F. M. A. and Farrag D. S. (1990). Synthesis and antimicrobial activity of new benzofuranylpyridine derivatives. Pharmazie, 45, 793–795.
  • Huang R., Wallqvist A. and Covell D. G. (2005). Anticancer metal compounds in NCI's tumor-screening database: putative mode of action. Biochem. Pharmacol., 69(7), 1009-1039. https://doi.org/10.1016/j.bcp.2005.01.001
  • Karaağaç D., Kürkçüoğlu G. S., Şenyel M., Hökelek T. (2017). Syntheses, structural characterization and spectroscopic studies of cadmium(II)-metal(II) cyanide complexes with 4-(2-aminoethyl)pyridine. Journal of Molecular Structure,1130, 80-88, https://doi.org/10.1016/j.molstruc.2016.09.089
  • Karaağaç D., Kürkçüoğlu G. S., Şenyel M., Şahin O. (2017). Synthesis, spectroscopic, thermal and structural properties of 4-(2-aminoethyl)pyridinium tetracyanometallate(II) complexes. Journal of Molecular Structure, 1136, 281-287. https://doi.org/10.1016/j.molstruc.2017.02.013
  • Keogh M., Sedehizadeh S. and Maddison P. C. (2011). Treatment for Lambert‐Eaton myasthenic syndrom. Database of Systematic Reviews, 2, 1-21. https://doi.org/10.1002/14651858.CD003279.pub3
  • Lee C., Yang W. and Parr R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev., B 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
  • Middleton R. W. and Wimberley D. G. (1980). Synthesis of 2‐amino‐3‐benzoylphenylacetic acid. J. Heterocycl. Chem. 17(8), 1663-1664.
  • Patrick G. L. and Kinsmar O. S. (1996). Synthesis and antifungal activity of novel aza-d--homosteroids, hydroisoquinolines, pyridines and dihydropyridines. J. Med. Chem., 31, 615–624. https://doi.org/10.1016/0223-5234(96)89557-2
  • Perdew J. P., Burke K. And Wang Y. (1996). Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533-16539. https://doi.org/10.1103/PhysRevB.54.16533
  • Pizarro A. M. and Sadler P. J. (2009). Unusual DNA binding modes for metal anticancer complexes. Biochimie, 91(10), 1198-211. https://doi.org/10.1016/j.biochi.2009.03.017
  • Sankpal U. T., Pius H., Khan M., Shukoor M. I., Maliakal P., Lee C .M., Abdelrahim M., Connelly S. F. and Basha R. (2012). Environmental factors in causing human cancers: emphasis on tumorigenesis. Tumor Biol., 33 (5), 1265–1274. https://doi.org/10.1007/s13277-012-0413-4
  • Sedehizadeh S., Keogh M. and Maddison P. (2012). The Use of Aminopyridines in Neurological Disorders. Clinical Neuropharmacol, 35, 191-200. doi: 10.1097/WNF.0b013e31825a68c5
  • Smith R. C. F., Emmen H. H., Bertelsmann F. W., Kulig B. M., van Loenen A. C. and Polman C. H. (1994). The effects of 4-aminopyridine on cognitive function in patients with multiple sclerosis: A pilot study. Neurology, 44(9), 1701- 1705. https://doi.org/10.1212/WNL.44.9.1701
  • Strupp M., Teufel J., Zwergal A., Schniepp R., Khodakhah K. and Feil K. (2017). Aminopyridines for the treatment of neurologic disorders. Neurol Clin Pract.,7(1), 65-76. https://doi.org/10.1212/CPJ.0000000000000321
  • Szakacs G., Paterson J. K., Ludwig J. A., Booth-Genthe C. and Gottesman M. M. (2006). Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 5, 219–234. https://doi.org/10.1038/nrd1984
  • Topaçlı A. and Bayarı S. (1999).Urey-Bradley force field of 4-ethylpyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,55(7–8),1389-1394. https://doi.org/10.1016/S1386-1425(98)00302-3
  • Vural H., Kara M., İdil Ö. (2016). Experimental and computational study of the structure and spectroscopic properties of 1′,3′-Dihydrospiro[cyclohexane-1,2′-[2H]imidazo[4,5-b]pyridine]. Journal of Molecular Structure,1125,662-670, https://doi.org/10.1016/j.molstruc.2016.07.065
  • Vural H., Ozdogan T. and Orbay M (2019). DFT investigation of the electronic structure and nonlinear optic properties (NLO) of 3-amino-4-(Boc-amino)pyridine. Indian J Phys., 93, 1113–1122. https://doi.org/10.1007/s12648-019-01391-0
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Hatice Vural 0000-0001-7940-2173

Publication Date August 31, 2021
Published in Issue Year 2021

Cite

APA Vural, H. (2021). Quantum chemical computational studies on 4-(1-Aminoethyl)pyridine. Erzincan University Journal of Science and Technology, 14(2), 751-760. https://doi.org/10.18185/erzifbed.906280