Research Article
BibTex RIS Cite

Optimisation of Machining Parameters ın Turning 17-4 Ph Stainless Steel Using the Grey-Based Taguchi Method

Year 2017, Volume: 10 Issue: 2, 243 - 254, 22.12.2017

Abstract

In this
study, an experimental optimization on cutting forces and surface roughness in
turning of 17-4 PH stainless steel using wiper and conventional insert cutting
tools with dry cutting condition were presented. The influences of feed rate,
depth of cut, and corner radius on surface roughness and cutting force were
examined. In order to optimize the turning process, Grey Relational Analysis
optimization method was used. The influence of each parameter on obtained
results was determined by using analysis of variance (ANOVA). The relationship
between dependent parameters and independent parameters were modeled by
Regression analysis. The optimal machinability of 17-4 PH stainless steel with
coated carbide insert was successfully determined in this study.

References

  • Ay, M., Basmaci, G. 2015. Investigation Of The Effects Of Conventional And Wiper Coated Carbide Tools Wıth Dry Cutting On Cutting Forces, Surface Roughness, And Material Hardnees In Turning 17-4 Ph Stainless Steel, The Online Journal of Science and Technology 6.
  • Cakir, M.C. 2000. Modern Machining Methods, VIPAS A.S.
  • Elbah, M., Yallese, M.A., Aouici, H., Mabrouki, T., Rigal, J.F. 2013. Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel, Measurement, (46), 3041–3056.
  • Grzesik, W., Wanat, T. 2006. Surface finish generated in hard turning of quenched alloy steel parts using conventional and wiper ceramic inserts, International Journal of Machine Tools Manufacturing (46), 1988–1995.
  • Field, M., Kahles, J.F., Koster W.P.1989. Surface finish and surface integrity., in: ASM International Materials Park-Ohio, 19–36.
  • Gokkaya, H., Nalbant, M. 2006. Formation and Distribution of Temperature During Chip Removal Cutting, Electronic Journal of Machine Technology (3), 33–44.
  • Jawahir, I.S., Brinksmeier, E., M’Saoubi, R., Aspinwall, D.K., Outeiro, J.C., Meyer D., et al. 2011. Surface integrity in material removal processes: Recent advances, CIRP Ann.- Manufacture Technology (60), 603–626.
  • Korkut, I., Kasap, M. 2004. Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel. Mater Design, Materials Design, (25), 303–305.
  • Kurt, A. 2006. Cutting Forces Generated During Machining and Mechanical Stresses The Creation of Mathematical Models and Experimental Investigation, PhD Thesis, Gazi University Institute of Pure and Applied Sciences Mechanical Education Branch.
  • Kurt, M., Hartomacioglu, S., Mutlu B., Koklu U. 2012. Minimization of the Surface Roughness and Form Error on the Milling of Free-Form Surface Using Grey Relational Analysis, Material Technology, (46), 205–213.
  • Lin, W.S., Lee, B.Y., Wu C.L. 2001. Modeling the surface roughness and cutting force for turning, Journal of Material Process Technology (108), 286–293.
  • Noordin, M.Y., Kurniawan, D., Sharif S. 2007. Hard turning of stainless steel using wiper coated carbide tool, International Journal of Precis Technology (1), 75–84.
  • Noordin, M.Y., Venkatesh, V.C., Sharif, S. 2007. Dry turning of tempered martensitic stainless tool steel using coated cermet and coated carbide tools, Journal of Mater Proccesing Technology (185), 83–90.
  • Palanisamy, D., Senthil, P. 2016. Optimization on turning parameters of 15-5PH stainless steel using Taguchi based grey approach and Topsis. Archive of Mechanical Engineering 63(3), 397-412.
  • Saglam, H., Yaldiz, S., Unsacar, F. 2007. The effect of tool geometry and cutting speed on main cutting force and tool tip temperature, Material Design (28), 101–111.
  • Shaw, M.C. 2005. Metal Cutting Principles, Oxford University Press, 357-361.
  • Sheth, M., Raiyani, H., Gajera, H. 2016. Multi objective optimization of parameter of turning on 17-4 PH material by grey relational method, International Journal of Scientific Development and Research, Volume 1 Issue 5, 219–225.
  • Stachurski, W. 2012. Influence of cutting conditions in turning with wiper type inserts on surface roughness and cutting forces, Mechanical. Engineering (16), 25–32.
  • Venkatesan, K., Ramanujam, R., Saxena, V., Chawdhury, N., Choudhary, V. 2014. Influence of cutting parameters on dry machining of Inconel 625 alloy with coated carbide insert - A statistical approach, ARPN Journal of Engineering and Applied Sciences, (9), 250–258.
  • Yang, W.H., Tarng, Y.S. 1998. Design optimization of cutting parameters for turning operations based on the Taguchi method, Journal of Materials Processing Technology, (84), 122–129

Optimisation of Machining Parameters ın Turning 17-4 Ph Stainless Steel Using the Grey-Based Taguchi Method

Year 2017, Volume: 10 Issue: 2, 243 - 254, 22.12.2017

Abstract

Bu çalışmada; 17-4 PH paslanmaz çeliğin silici ve
geleneksel kesici uçlar ile kuru şartlarda tornalanmasının kesme kuvvetleri ve
yüzey pürüzlülüğüne etkileri gri tabanlıtaguchi optimizasyonu sunulmuştur.
İlerleme oranının, kesme derinliğinin ve köşe radisünün kesme kuvveti ve yüzey
pürüzlülüğü üzerine etkileri incelendi. Gri ilişki analiz optimizasyon metodu
kullanıldı.  Her bir parametrenin elde
edilen sonuçlara etkisinin tayini içinde varyans analizi (ANOVA)
kullanılmıştır. Bağımlı değişkenlerle bağımsız değişkenler arasındaki ilişki
regresyon analizi ile modellendi. Bu çalışmada 17-4 PH paslanmaz çeliğin
kaplamalı karbid uç ile optimal işlenebilirliği tayin edildi.

References

  • Ay, M., Basmaci, G. 2015. Investigation Of The Effects Of Conventional And Wiper Coated Carbide Tools Wıth Dry Cutting On Cutting Forces, Surface Roughness, And Material Hardnees In Turning 17-4 Ph Stainless Steel, The Online Journal of Science and Technology 6.
  • Cakir, M.C. 2000. Modern Machining Methods, VIPAS A.S.
  • Elbah, M., Yallese, M.A., Aouici, H., Mabrouki, T., Rigal, J.F. 2013. Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel, Measurement, (46), 3041–3056.
  • Grzesik, W., Wanat, T. 2006. Surface finish generated in hard turning of quenched alloy steel parts using conventional and wiper ceramic inserts, International Journal of Machine Tools Manufacturing (46), 1988–1995.
  • Field, M., Kahles, J.F., Koster W.P.1989. Surface finish and surface integrity., in: ASM International Materials Park-Ohio, 19–36.
  • Gokkaya, H., Nalbant, M. 2006. Formation and Distribution of Temperature During Chip Removal Cutting, Electronic Journal of Machine Technology (3), 33–44.
  • Jawahir, I.S., Brinksmeier, E., M’Saoubi, R., Aspinwall, D.K., Outeiro, J.C., Meyer D., et al. 2011. Surface integrity in material removal processes: Recent advances, CIRP Ann.- Manufacture Technology (60), 603–626.
  • Korkut, I., Kasap, M. 2004. Determination of optimum cutting parameters during machining of AISI 304 austenitic stainless steel. Mater Design, Materials Design, (25), 303–305.
  • Kurt, A. 2006. Cutting Forces Generated During Machining and Mechanical Stresses The Creation of Mathematical Models and Experimental Investigation, PhD Thesis, Gazi University Institute of Pure and Applied Sciences Mechanical Education Branch.
  • Kurt, M., Hartomacioglu, S., Mutlu B., Koklu U. 2012. Minimization of the Surface Roughness and Form Error on the Milling of Free-Form Surface Using Grey Relational Analysis, Material Technology, (46), 205–213.
  • Lin, W.S., Lee, B.Y., Wu C.L. 2001. Modeling the surface roughness and cutting force for turning, Journal of Material Process Technology (108), 286–293.
  • Noordin, M.Y., Kurniawan, D., Sharif S. 2007. Hard turning of stainless steel using wiper coated carbide tool, International Journal of Precis Technology (1), 75–84.
  • Noordin, M.Y., Venkatesh, V.C., Sharif, S. 2007. Dry turning of tempered martensitic stainless tool steel using coated cermet and coated carbide tools, Journal of Mater Proccesing Technology (185), 83–90.
  • Palanisamy, D., Senthil, P. 2016. Optimization on turning parameters of 15-5PH stainless steel using Taguchi based grey approach and Topsis. Archive of Mechanical Engineering 63(3), 397-412.
  • Saglam, H., Yaldiz, S., Unsacar, F. 2007. The effect of tool geometry and cutting speed on main cutting force and tool tip temperature, Material Design (28), 101–111.
  • Shaw, M.C. 2005. Metal Cutting Principles, Oxford University Press, 357-361.
  • Sheth, M., Raiyani, H., Gajera, H. 2016. Multi objective optimization of parameter of turning on 17-4 PH material by grey relational method, International Journal of Scientific Development and Research, Volume 1 Issue 5, 219–225.
  • Stachurski, W. 2012. Influence of cutting conditions in turning with wiper type inserts on surface roughness and cutting forces, Mechanical. Engineering (16), 25–32.
  • Venkatesan, K., Ramanujam, R., Saxena, V., Chawdhury, N., Choudhary, V. 2014. Influence of cutting parameters on dry machining of Inconel 625 alloy with coated carbide insert - A statistical approach, ARPN Journal of Engineering and Applied Sciences, (9), 250–258.
  • Yang, W.H., Tarng, Y.S. 1998. Design optimization of cutting parameters for turning operations based on the Taguchi method, Journal of Materials Processing Technology, (84), 122–129
There are 20 citations in total.

Details

Subjects Engineering
Journal Section Makaleler
Authors

Gültekin BASMACI

Mustafa AY

İsmail KIRBAŞ

Publication Date December 22, 2017
Published in Issue Year 2017 Volume: 10 Issue: 2

Cite

APA BASMACI, G., AY, M., & KIRBAŞ, İ. (2017). Optimisation of Machining Parameters ın Turning 17-4 Ph Stainless Steel Using the Grey-Based Taguchi Method. Erzincan University Journal of Science and Technology, 10(2), 243-254. https://doi.org/10.18185/erzifbed.312384