Review
BibTex RIS Cite

Katil Mayalar ve Williopsis spp.’nin Bozucu Mikroorganizmalar Üzerindeki Etkisi, Katil Toksinlerin Kullanım Olanakları

Year 2019, Volume: 12 Issue: 1, 170 - 184, 24.03.2019
https://doi.org/10.18185/erzifbed.434209

Abstract





Bazı maya türleri, bulundukları ortama protein
yapısında olan ve diğer mikroorganizmalar üzerinde öldürücü etki gösteren
toksinler salgılarlar. Bu mayaların
ürettiği toksinler, aynı türün suşlarına veya yakın ilişkili türlere karşı
inhibisyon aktivitesi gösteren protein yapısındaki bileşiklerdir; ancak
diğer mikroorganizmalara ve insan hücrelerine karşı herhangi bir olumsuz
etkileri yoktur. Bugüne kadar öldürücü toksin üreten maya türleri, genel
olarak çok çeşitli maya grupları içinde tanımlanmıştır. İlk olarak katil
toksin özelliğinin Saccharomyces
cerevisiae
suşlarında belirlenmesinin ardından, bu özellik Debaryomyces, Hanseniaspora, Kluyveromyces,
Pichia, Saccharomyces, Schwanniomyces
and Williopsis cinslerinin de
içinde bulunduğu 90'dan fazla maya türü için tespit edilmiştir. Bunlar içinde
Williopsis’in tür ve suşları en iyi
bilinen katil toksin üreticileridir. Katil mayaların gıda sektöründe
kullanılması birçok araştırmaya konu olmuştur ve elde edilen sonuçlar ile
katil mayaların biyoteknoloji, biyomedikal ve fermentasyon uygulamalarında
biyokoruyucu olarak kullanımının uygun olabileceği ortaya konulmuştur. Bu
derleme çalışmasında bazı katil mayalar ve ürettikleri toksinlerin bozucu
mikroorganizmalar üzerindeki etkisi ve kullanım olanakları hakkında bilgi
verilmeye çalışılmıştır.



References

  • Altuntaş, G. E., Özçelik, F. (2007). Killer özellikli mayaların etki mekanizmaları ve endüstride yol açtıkları sorunlar. Gıda, 32:205-212.
  • Ashida, S., Shimazaki, T., Kitano, K., Hara, S. (1983). New killer toxin of Hansenula mrakii. Agricultural and Biological Chemistry, 47(12), 2953-2955.
  • Barnett, J. A., Payne, R. W., Yarrow, D. (1990). “Yeasts: Characteristics and identification”, 2nd ed. Cambridge University Press, Cambridge, United Kingdom.
  • Battey, A. S., Duffy, S., Schaffner, D. W. (2002). Modeling yeast spoilage in cold-filled readyto- drink beverages with Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Candida lipolytica. Applied and Environmental Microbiology, 68, 1901–1906.
  • Bevan, E. A., Makover, M. (1963). The physiological basis of the killer character in yeasts (Geerts, S.J., Ed.), Genetic Today, XIth International Congress on Genetics, vol. 1, pp. 202–203. Pergamon Press, Oxford.
  • Bussey, H. (1972). Effects of the yeast killer factor on sensitive cells. Nature: New Biology, 235, 73-75.
  • Bussey, H. (1991). K1 killer toxin, a pore-forming protein from yeast. Molecular Microbiology, 5, 2339-2343.
  • Carocho, M., Morales, P., Ferreira, I. C. (2015). Natural food additives: Quo vadis? Trends in Food Science and Technology, 45(2), 284-295.
  • Chanchaichaovivat, A., Ruenwongsa, P., Panijpan, B. (2007). Screening and identification of yeast strains from fruits and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biological Control, 42, 326-335.
  • Chen, W. B., Han, Y. F., Jong, S. C., Chang, S. C. (2000). Isolation, purification, and characterization of a killer protein from Schwanniomyces occidentalis. Applied and Environmental Microbiology, 66, 5348-5352.
  • Chessa, R., Landolfo, S., Ciani, M., Budroni, M., Zara, S., Ustun, M., Cakar, Z. P., Mannazzu I. (2017). Biotechnological exploitation of Tetrapisispora phaffii killer toxin: heterologous production in Komagataella phaffii (Pichia pastoris). Applied Microbiology and Biotechnology, 101, 2931–2942.
  • Chi, Z. M., Liu, G.L., Zhao, S. F., Li, J., Peng, Y. (2010). Marine yeasts as biocontrol agents and producers of bio-products. Applied Microbiology and Biotechnology, 86, 1227–1241.
  • Ciafardini, G., Zullo, B.A., Cioccia, G., Iride, A. (2006). Lipolytic activity of Williopsis californica and Saccharomyces serevisiae in extra virgin olive oil, International Journal of Food Microbiology, 107, 27-32.
  • Ciani, M., Comitini, F. (2011). Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Annals of Microbiology, 61, 25-32.
  • Ciani, M., Fatichenti, F. (2001). Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine yeast. Applied and Environmental Microbiology, 67, 3058-3063.
  • De Ingeniis, J., Raffaelli, N., Ciani, M., Mannazzu, I. (2009). Pichia anomala DBVPG 3003 secretes a ubiquitin-like protein that has antimicrobial activity. Applied and Environmental Microbiology, 75(4), 1129-1134.
  • Du Toit, M., Pretorius, I. S. (2000). Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal-a review. South African Journal for Enology and Viticulture, 21, 74-96.
  • El-Banna, A. A., Malak, A. E, Shehata, M. G. (2011).Yeasts producing killer toxins: An overview. Alexandria Journal of Food Science and Technology, 8(2), 41-53.Erten, H., Campbell, I. (2001). The production of low-alcohol wines by aerobic yeasts, Journal of the Institute of Brewing, 107, 207-215.
  • Fleet, G. H., (1992). Spoilage yeasts. Critical Review of Biotechnology, 12, 1-44.
  • Galvez, A., Grande Burgos, M. J., López, R. L., Perez Pulido, R. (2014). “Food Biopreservation”, Springer-Verlag, New York, NY, USA, 15-22.
  • Golubev, W. I. (1998). “Mycocins (killer toxins), The yeasts”, A taxonomic study. Elsevier, Amsterdam, The Netherlands, 55-62.
  • Golubev, W.I. (2006). Antagonistic interactions among yeasts. Biodiversity and ecophysiology of yeasts, Springer-Verlag, Berlin, Germany, 197–219.
  • Guyard , C. , Dehecq , E., Tissier , J., Polonelli , L., Dei-Cas , E., Cailliez , J., Menozzi , F. D. (2002). Involvement of β-glucans in the widespectrum antimicrobial activity of Williopsis saturnus var. mrakii MUCL 41968 killer toxin. Molecular Medicine, 8, 686-694.
  • Hatoum, R., Labrie, S., Fliss, I. (2012). Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Frontiers in Microbiology, 3, 421.
  • Hodgson, V. J., Button, D., Walker, G. M. (1995). Anti-Candida activity of a novel killer toxin from the yeast Williopsis mrakii. Microbiology, 141(8), 2003-2012.Inoue, Y., Fukuda, K., Wakai, Y., Sudsai, T., Kimura, A. (1994). Ester formation by a yeast Hansenula mraki IFO 0895: Contribution of esterase for iso-amyl acetate production in sake brewing, Lebensmittel-Wissenshaft und -Technologie, 27, 189-93.
  • Izgu, F., Altinbay, D. (2004). Isolation and characterization of the K5-type yeast killer protein and its homology with an exo-β-1,3-glucanase. Bioscience Biotechnology and Biochemistry, 68, 685-693.
  • Izgu, F., Altinbay, D. (1997). Killer toxins of certain yeast strains have potential growth inhibitory activity on Gram-positive pathogenic bacteria. Microbios, 89, 15-22.
  • Jijakli, M. H., Lepoivre, P. (1998). Characterization of an exo-β-1, 3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology, 88(4), 335-343.
  • Kimura, T., Kitamoto, N., Matsuoka, K., Nakamura, K., Iimura,Y., Kito, Y. (1993). Isolation and nucleotide sequences of the genes encoding killer toxins from Hansenula mrakii and H. saturnus. Gene, 137, 265-270.
  • Klassen, R., Meinhardt., F. (2005). Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cellular Microbiology, 7(3), 393-401.
  • Liu, S. Q., Tsao, M. (2009). Inhibition of spoilage yeasts in cheese by killer yeast Williopsis saturnus var. saturnus. International Journal of Food Microbiology, 131(2-3), 280-282.
  • Liu, J., Sui, Y., Wisniewski, M., Droby, S., Liu, Y. (2013). Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology. 167, 153-160.
  • Lowes, K., Shearmen, C. A., Payne, J., Mackenzie, D., Archa, D. B., Merry, R. J., Gasson, M. J. (2000). Preventation of yeast spoilage in feed and food by the yeast mycocins HMK. Applied and Environmental Microbiology, 66, 1066-1076.
  • Lucera, A., Costa, C., Conte, A., Del Nobile, M. A. (2012). Food applications of natural antimicrobial compounds. Frontiers in Microbiology, 3, 287.
  • Magliani, W., Conti, S., Gerloni, M., Bertolotti, D., Polonelli, L. (1997). Yeast killer systems. Clinical Microbiology Reviews, 10, 369-400.
  • Magliani, W., Conti, S., Travassos, L. R., Polonelli, L. (2008). From yeast killer toxins to antibiobodies and beyond. FEMS Microbiology letters, 288 (1), 1-8.
  • Meneghin, M. C., Reis, V. R., Ceccato-Antonini, S. R. (2010). Inhibition of bacteria contaminating alcoholic fermentations by killer yeasts. Brazilian Archives of Biology and Technology, 53, 1043-1050.
  • Michalcakova, S., Sulo, P., Slavikova, E. (1993). Killer yeasts of Kluyveromyces and Hansenula genera with potential application in fermentation and therapy. Acta Biotechnology, 13, 341-50.
  • Muccilli, S., Restuccia, C. (2015). Bioprotective role of yeasts. Microorganisms 3(4), 588-611.
  • Nomoto, H., Kitano, K., Shimazaki, T., Kodama, K., Hara, S. (1984). Distribution of killer yeasts in the genera Hansenula. Agricultural and Biological Chemistry, 48, 807-809.
  • Ochigava, I., Collier, P. J., Walker, G. M., Hakenbeck, R. (2011). Williopsis saturnus yeast killer toxin does not kill Streptococcus pneumonia. Antonie van Leeuwenhoek, 99, 559-566.
  • Papadimitriou, M. N. B., Resende, C., Kuchler, K., Brul, S. (2007). High Pdr12 levels in spoilage yeast (Saccharomyces cerevisiae) correlate directly with sorbic acid levels in the culture medium but are not sufficient to provide cells with acquired resistance to the food preservative. International Journal of Food Microbiology, 113, 173-179.
  • Polonelli, L., Morace, G. (1986). Re-evaluation of the yeast killer phenomenon. Journal of Clinical Microbiology, 24, 866-869.
  • Polonelli, L., Lorenzini, R., de Bernardis, F., Morace, G. (1986). Potential therapeutic effect of yeast killer toxin. Mycopathologia, 96, 103-107.
  • Ross, R. P., Morgan, S., Hill, C. (2002). Preservation and fermentation: Past, present and future. International Journal of Food Microbiology, 2002, 79, 3-16.
  • Santos, A., San Mauro, M., Bravo, E., Marquina, D. (2009). PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis, Microbiology, 155, 624-634.
  • Santos, A., Sanchez, A., Marquira, D. (2004).Yeast as biological agent to control Botrytis cinerae. Microbiological Rsearch, 159, 331-339.
  • Schmitt, M. J., Breinig, F. (2002). The viral killer system in yeast: from molecular biology to application. FEMS Microbiology Reviews, 26, 257-276.
  • Seiller, H. (2002). Yeasts in milk and dairy products, Encyclopedia of Dairy Science, Academic Press, New York, 4, 2761-2769.
  • Sperber, W. H. Doyle, M. P. (2009). Compendium of the Microbiological Spoilage of Foods and Beverages; Springer, New York, USA.
  • Stark, M. J. R., Boyd, A., Mileham, A. J., Romanos, M. A. (1990). The plasmid-encoded killer system of Klyveromyces lactis. Yeast, 6, 1-29.
  • Stiles, M. E. (1996). Biopreservation by lactic acid bacteria. Antonie van Leeuwen, 70, 331-345.
  • Stratford, M. (2006). Food and beverage spoilage yeasts. Yeasts in Food and Beverage, Springer, Berlin, 335-379.
  • Suzuki, C., Ando,Y., Machida, S. (2001). Interaction of SMKT,a killer toxin produced by Pichiafarinosa, with the yeast cell membranes. Yeast 8, 1471-1478.
  • Suzzi, G., Romano, P., Ponti, I., Montuschi, C. (1995). Natural wine yeasts as biocontrol agents, Journal of Applied Bacteriology, 78, 304-308.
  • Takasuka, T., Komiyama, T., Furuchi, Y., Watanabe, T. (1995). Cell wall synthesis specific cytocidal effect of Hansenula mraki toxin-1 on Saccharomyces cerevisiae, Cellular and Molecular Biology Research, Vol. 41, pp. 575-81.
  • Tiwari, B. K., Valdramidis, V. P., O’Donnell, C. P., Muthukumarappan, K., Bourke, P., Cullen, P. J. (2009). Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry, 57 (14), 5987-6000.
  • Todd, B. E. N, Fleet, G. H., Henschke, P. A. (2000). Promotion of autolysis through the interaction of killer and sensitive yeasts: potential application in sparkling wine production. American Journal of Enology and Viticulture, 51, 65-72.
  • Türkay, Ç. (2012). Katil maya Lindnera saturnus’ un bozucu mayalara etkisi (in vitro). Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi, 2012, 56.
  • Viljoen, B. C., Lourens-Hattingha, A., Ikalafenga, B., Peter, G. (2003). Temperature abuse initiating yeast growth in yoghurt. Food Research International, 36, 193-197.
  • Vital, M. J. S., Abranches, J., Hagler, A. N., Mendoca-Hagler, L. C. (2002). Mycocinogenic yeasts isolated from Amazon soils of the Maraca Ecological Station, Rorainma. Brazilian Journal of Microbiology, 33, 230-235.
  • Waema , S., Maneesri, J., Masniyom, P. (2009). Isolation and identification of killer yeast from fermented Vegetables. Asian Journal of Food and Agro-Industry, 2, 126-134.
  • Walker, G. M., Mcleod, A. H., Hodgson, V. J. (1995). Interactions between killer yeasts and pathogenic fungi. FEMS Microbiology Letters, 127, 213-222.
  • Woods, D. R., Bevan, E. A. (1968). Studies on the Nature of the killer factor produced by Saccharomyces cerevisiae. Journal of General Microbiology, 51(1), 115-126.
  • Wyder, M. T., Puhan, Z. (1999). Role of selected yeasts in cheese ripening: an evaluation in aseptic cheese curd slurries. International Dairy Journal, 9, 117-24.
  • Yamamoto, T., Uchida, K. and Hiratani, T. (1988). In vitro activity of the killer toxin from yeast Hanenula maraki against yeasts and moulds. Journal of Antibiotics, 41, 398-403.
  • Yilmaztekin, M., Erten, H., Cabaroglu, T. (2008). Production of isoamyl acetate from sugar beet molasses by Williopsis saturnus var. saturnus. Journal of the Institute of Brewing, 114, 34-38.
  • Yilmaztekin, M., Erten, H., Cabaroglu, T. (2009) Enhanced production of isoamyl acetate from beet molasses with addition of fusel oil by Williopsis saturnus var. saturnus. Food Chemistry, 112, 290-294.
  • Young, T. W., Yagiu, M. (1978). A comparison of the killer character in different yeasts and its classification. Antonie van Leeuwenhoek, 44, 59-77.
  • Zagorc, T., Maraz, A., Cadez, N., Jemec, K. P., Peter, G., Resnik, M., Nemanic, J., Raspor, P. (2001). Indigenous wine killer yeasts and their application as a starter culture in wine fermentation. Food Microbiology, 18, 441-451.
  • Zhu, Y. S., Kane, J., Zhang, X. Y., Zhang, M., Tipper. D. J. (1993). Role of the gamma component of preprotoxin in expression of the yeast k1 killer phenotype. Yeast, 9, 251-266.
Year 2019, Volume: 12 Issue: 1, 170 - 184, 24.03.2019
https://doi.org/10.18185/erzifbed.434209

Abstract

References

  • Altuntaş, G. E., Özçelik, F. (2007). Killer özellikli mayaların etki mekanizmaları ve endüstride yol açtıkları sorunlar. Gıda, 32:205-212.
  • Ashida, S., Shimazaki, T., Kitano, K., Hara, S. (1983). New killer toxin of Hansenula mrakii. Agricultural and Biological Chemistry, 47(12), 2953-2955.
  • Barnett, J. A., Payne, R. W., Yarrow, D. (1990). “Yeasts: Characteristics and identification”, 2nd ed. Cambridge University Press, Cambridge, United Kingdom.
  • Battey, A. S., Duffy, S., Schaffner, D. W. (2002). Modeling yeast spoilage in cold-filled readyto- drink beverages with Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Candida lipolytica. Applied and Environmental Microbiology, 68, 1901–1906.
  • Bevan, E. A., Makover, M. (1963). The physiological basis of the killer character in yeasts (Geerts, S.J., Ed.), Genetic Today, XIth International Congress on Genetics, vol. 1, pp. 202–203. Pergamon Press, Oxford.
  • Bussey, H. (1972). Effects of the yeast killer factor on sensitive cells. Nature: New Biology, 235, 73-75.
  • Bussey, H. (1991). K1 killer toxin, a pore-forming protein from yeast. Molecular Microbiology, 5, 2339-2343.
  • Carocho, M., Morales, P., Ferreira, I. C. (2015). Natural food additives: Quo vadis? Trends in Food Science and Technology, 45(2), 284-295.
  • Chanchaichaovivat, A., Ruenwongsa, P., Panijpan, B. (2007). Screening and identification of yeast strains from fruits and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biological Control, 42, 326-335.
  • Chen, W. B., Han, Y. F., Jong, S. C., Chang, S. C. (2000). Isolation, purification, and characterization of a killer protein from Schwanniomyces occidentalis. Applied and Environmental Microbiology, 66, 5348-5352.
  • Chessa, R., Landolfo, S., Ciani, M., Budroni, M., Zara, S., Ustun, M., Cakar, Z. P., Mannazzu I. (2017). Biotechnological exploitation of Tetrapisispora phaffii killer toxin: heterologous production in Komagataella phaffii (Pichia pastoris). Applied Microbiology and Biotechnology, 101, 2931–2942.
  • Chi, Z. M., Liu, G.L., Zhao, S. F., Li, J., Peng, Y. (2010). Marine yeasts as biocontrol agents and producers of bio-products. Applied Microbiology and Biotechnology, 86, 1227–1241.
  • Ciafardini, G., Zullo, B.A., Cioccia, G., Iride, A. (2006). Lipolytic activity of Williopsis californica and Saccharomyces serevisiae in extra virgin olive oil, International Journal of Food Microbiology, 107, 27-32.
  • Ciani, M., Comitini, F. (2011). Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Annals of Microbiology, 61, 25-32.
  • Ciani, M., Fatichenti, F. (2001). Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine yeast. Applied and Environmental Microbiology, 67, 3058-3063.
  • De Ingeniis, J., Raffaelli, N., Ciani, M., Mannazzu, I. (2009). Pichia anomala DBVPG 3003 secretes a ubiquitin-like protein that has antimicrobial activity. Applied and Environmental Microbiology, 75(4), 1129-1134.
  • Du Toit, M., Pretorius, I. S. (2000). Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal-a review. South African Journal for Enology and Viticulture, 21, 74-96.
  • El-Banna, A. A., Malak, A. E, Shehata, M. G. (2011).Yeasts producing killer toxins: An overview. Alexandria Journal of Food Science and Technology, 8(2), 41-53.Erten, H., Campbell, I. (2001). The production of low-alcohol wines by aerobic yeasts, Journal of the Institute of Brewing, 107, 207-215.
  • Fleet, G. H., (1992). Spoilage yeasts. Critical Review of Biotechnology, 12, 1-44.
  • Galvez, A., Grande Burgos, M. J., López, R. L., Perez Pulido, R. (2014). “Food Biopreservation”, Springer-Verlag, New York, NY, USA, 15-22.
  • Golubev, W. I. (1998). “Mycocins (killer toxins), The yeasts”, A taxonomic study. Elsevier, Amsterdam, The Netherlands, 55-62.
  • Golubev, W.I. (2006). Antagonistic interactions among yeasts. Biodiversity and ecophysiology of yeasts, Springer-Verlag, Berlin, Germany, 197–219.
  • Guyard , C. , Dehecq , E., Tissier , J., Polonelli , L., Dei-Cas , E., Cailliez , J., Menozzi , F. D. (2002). Involvement of β-glucans in the widespectrum antimicrobial activity of Williopsis saturnus var. mrakii MUCL 41968 killer toxin. Molecular Medicine, 8, 686-694.
  • Hatoum, R., Labrie, S., Fliss, I. (2012). Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Frontiers in Microbiology, 3, 421.
  • Hodgson, V. J., Button, D., Walker, G. M. (1995). Anti-Candida activity of a novel killer toxin from the yeast Williopsis mrakii. Microbiology, 141(8), 2003-2012.Inoue, Y., Fukuda, K., Wakai, Y., Sudsai, T., Kimura, A. (1994). Ester formation by a yeast Hansenula mraki IFO 0895: Contribution of esterase for iso-amyl acetate production in sake brewing, Lebensmittel-Wissenshaft und -Technologie, 27, 189-93.
  • Izgu, F., Altinbay, D. (2004). Isolation and characterization of the K5-type yeast killer protein and its homology with an exo-β-1,3-glucanase. Bioscience Biotechnology and Biochemistry, 68, 685-693.
  • Izgu, F., Altinbay, D. (1997). Killer toxins of certain yeast strains have potential growth inhibitory activity on Gram-positive pathogenic bacteria. Microbios, 89, 15-22.
  • Jijakli, M. H., Lepoivre, P. (1998). Characterization of an exo-β-1, 3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology, 88(4), 335-343.
  • Kimura, T., Kitamoto, N., Matsuoka, K., Nakamura, K., Iimura,Y., Kito, Y. (1993). Isolation and nucleotide sequences of the genes encoding killer toxins from Hansenula mrakii and H. saturnus. Gene, 137, 265-270.
  • Klassen, R., Meinhardt., F. (2005). Induction of DNA damage and apoptosis in Saccharomyces cerevisiae by a yeast killer toxin. Cellular Microbiology, 7(3), 393-401.
  • Liu, S. Q., Tsao, M. (2009). Inhibition of spoilage yeasts in cheese by killer yeast Williopsis saturnus var. saturnus. International Journal of Food Microbiology, 131(2-3), 280-282.
  • Liu, J., Sui, Y., Wisniewski, M., Droby, S., Liu, Y. (2013). Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology. 167, 153-160.
  • Lowes, K., Shearmen, C. A., Payne, J., Mackenzie, D., Archa, D. B., Merry, R. J., Gasson, M. J. (2000). Preventation of yeast spoilage in feed and food by the yeast mycocins HMK. Applied and Environmental Microbiology, 66, 1066-1076.
  • Lucera, A., Costa, C., Conte, A., Del Nobile, M. A. (2012). Food applications of natural antimicrobial compounds. Frontiers in Microbiology, 3, 287.
  • Magliani, W., Conti, S., Gerloni, M., Bertolotti, D., Polonelli, L. (1997). Yeast killer systems. Clinical Microbiology Reviews, 10, 369-400.
  • Magliani, W., Conti, S., Travassos, L. R., Polonelli, L. (2008). From yeast killer toxins to antibiobodies and beyond. FEMS Microbiology letters, 288 (1), 1-8.
  • Meneghin, M. C., Reis, V. R., Ceccato-Antonini, S. R. (2010). Inhibition of bacteria contaminating alcoholic fermentations by killer yeasts. Brazilian Archives of Biology and Technology, 53, 1043-1050.
  • Michalcakova, S., Sulo, P., Slavikova, E. (1993). Killer yeasts of Kluyveromyces and Hansenula genera with potential application in fermentation and therapy. Acta Biotechnology, 13, 341-50.
  • Muccilli, S., Restuccia, C. (2015). Bioprotective role of yeasts. Microorganisms 3(4), 588-611.
  • Nomoto, H., Kitano, K., Shimazaki, T., Kodama, K., Hara, S. (1984). Distribution of killer yeasts in the genera Hansenula. Agricultural and Biological Chemistry, 48, 807-809.
  • Ochigava, I., Collier, P. J., Walker, G. M., Hakenbeck, R. (2011). Williopsis saturnus yeast killer toxin does not kill Streptococcus pneumonia. Antonie van Leeuwenhoek, 99, 559-566.
  • Papadimitriou, M. N. B., Resende, C., Kuchler, K., Brul, S. (2007). High Pdr12 levels in spoilage yeast (Saccharomyces cerevisiae) correlate directly with sorbic acid levels in the culture medium but are not sufficient to provide cells with acquired resistance to the food preservative. International Journal of Food Microbiology, 113, 173-179.
  • Polonelli, L., Morace, G. (1986). Re-evaluation of the yeast killer phenomenon. Journal of Clinical Microbiology, 24, 866-869.
  • Polonelli, L., Lorenzini, R., de Bernardis, F., Morace, G. (1986). Potential therapeutic effect of yeast killer toxin. Mycopathologia, 96, 103-107.
  • Ross, R. P., Morgan, S., Hill, C. (2002). Preservation and fermentation: Past, present and future. International Journal of Food Microbiology, 2002, 79, 3-16.
  • Santos, A., San Mauro, M., Bravo, E., Marquina, D. (2009). PMKT2, a new killer toxin from Pichia membranifaciens, and its promising biotechnological properties for control of the spoilage yeast Brettanomyces bruxellensis, Microbiology, 155, 624-634.
  • Santos, A., Sanchez, A., Marquira, D. (2004).Yeast as biological agent to control Botrytis cinerae. Microbiological Rsearch, 159, 331-339.
  • Schmitt, M. J., Breinig, F. (2002). The viral killer system in yeast: from molecular biology to application. FEMS Microbiology Reviews, 26, 257-276.
  • Seiller, H. (2002). Yeasts in milk and dairy products, Encyclopedia of Dairy Science, Academic Press, New York, 4, 2761-2769.
  • Sperber, W. H. Doyle, M. P. (2009). Compendium of the Microbiological Spoilage of Foods and Beverages; Springer, New York, USA.
  • Stark, M. J. R., Boyd, A., Mileham, A. J., Romanos, M. A. (1990). The plasmid-encoded killer system of Klyveromyces lactis. Yeast, 6, 1-29.
  • Stiles, M. E. (1996). Biopreservation by lactic acid bacteria. Antonie van Leeuwen, 70, 331-345.
  • Stratford, M. (2006). Food and beverage spoilage yeasts. Yeasts in Food and Beverage, Springer, Berlin, 335-379.
  • Suzuki, C., Ando,Y., Machida, S. (2001). Interaction of SMKT,a killer toxin produced by Pichiafarinosa, with the yeast cell membranes. Yeast 8, 1471-1478.
  • Suzzi, G., Romano, P., Ponti, I., Montuschi, C. (1995). Natural wine yeasts as biocontrol agents, Journal of Applied Bacteriology, 78, 304-308.
  • Takasuka, T., Komiyama, T., Furuchi, Y., Watanabe, T. (1995). Cell wall synthesis specific cytocidal effect of Hansenula mraki toxin-1 on Saccharomyces cerevisiae, Cellular and Molecular Biology Research, Vol. 41, pp. 575-81.
  • Tiwari, B. K., Valdramidis, V. P., O’Donnell, C. P., Muthukumarappan, K., Bourke, P., Cullen, P. J. (2009). Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry, 57 (14), 5987-6000.
  • Todd, B. E. N, Fleet, G. H., Henschke, P. A. (2000). Promotion of autolysis through the interaction of killer and sensitive yeasts: potential application in sparkling wine production. American Journal of Enology and Viticulture, 51, 65-72.
  • Türkay, Ç. (2012). Katil maya Lindnera saturnus’ un bozucu mayalara etkisi (in vitro). Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi, 2012, 56.
  • Viljoen, B. C., Lourens-Hattingha, A., Ikalafenga, B., Peter, G. (2003). Temperature abuse initiating yeast growth in yoghurt. Food Research International, 36, 193-197.
  • Vital, M. J. S., Abranches, J., Hagler, A. N., Mendoca-Hagler, L. C. (2002). Mycocinogenic yeasts isolated from Amazon soils of the Maraca Ecological Station, Rorainma. Brazilian Journal of Microbiology, 33, 230-235.
  • Waema , S., Maneesri, J., Masniyom, P. (2009). Isolation and identification of killer yeast from fermented Vegetables. Asian Journal of Food and Agro-Industry, 2, 126-134.
  • Walker, G. M., Mcleod, A. H., Hodgson, V. J. (1995). Interactions between killer yeasts and pathogenic fungi. FEMS Microbiology Letters, 127, 213-222.
  • Woods, D. R., Bevan, E. A. (1968). Studies on the Nature of the killer factor produced by Saccharomyces cerevisiae. Journal of General Microbiology, 51(1), 115-126.
  • Wyder, M. T., Puhan, Z. (1999). Role of selected yeasts in cheese ripening: an evaluation in aseptic cheese curd slurries. International Dairy Journal, 9, 117-24.
  • Yamamoto, T., Uchida, K. and Hiratani, T. (1988). In vitro activity of the killer toxin from yeast Hanenula maraki against yeasts and moulds. Journal of Antibiotics, 41, 398-403.
  • Yilmaztekin, M., Erten, H., Cabaroglu, T. (2008). Production of isoamyl acetate from sugar beet molasses by Williopsis saturnus var. saturnus. Journal of the Institute of Brewing, 114, 34-38.
  • Yilmaztekin, M., Erten, H., Cabaroglu, T. (2009) Enhanced production of isoamyl acetate from beet molasses with addition of fusel oil by Williopsis saturnus var. saturnus. Food Chemistry, 112, 290-294.
  • Young, T. W., Yagiu, M. (1978). A comparison of the killer character in different yeasts and its classification. Antonie van Leeuwenhoek, 44, 59-77.
  • Zagorc, T., Maraz, A., Cadez, N., Jemec, K. P., Peter, G., Resnik, M., Nemanic, J., Raspor, P. (2001). Indigenous wine killer yeasts and their application as a starter culture in wine fermentation. Food Microbiology, 18, 441-451.
  • Zhu, Y. S., Kane, J., Zhang, X. Y., Zhang, M., Tipper. D. J. (1993). Role of the gamma component of preprotoxin in expression of the yeast k1 killer phenotype. Yeast, 9, 251-266.
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mehmet Yüksel

Arzu Kavaz Yüksel This is me

Publication Date March 24, 2019
Published in Issue Year 2019 Volume: 12 Issue: 1

Cite

APA Yüksel, M., & Kavaz Yüksel, A. (2019). Katil Mayalar ve Williopsis spp.’nin Bozucu Mikroorganizmalar Üzerindeki Etkisi, Katil Toksinlerin Kullanım Olanakları. Erzincan University Journal of Science and Technology, 12(1), 170-184. https://doi.org/10.18185/erzifbed.434209