Research Article
BibTex RIS Cite

Experimental and Theoretical Investigation of Static and Dynamic Bending Properties of Intramedullary Nails

Year 2019, Volume: 12 Issue: 2, 595 - 606, 31.08.2019
https://doi.org/10.18185/erzifbed.454431

Abstract

The greatest expectation from
intramedullary nails, which are used in the treatment of long bones by placing
in the bone marrow, is that they cannot be damaged during bone healing and
allow the adequate load distribution. There are many different kind of commercially
available intramedullary nails and also, one of the mostly used types of this
nails are hollow nails. Also, static and fatigue bending loads are taken into
account in different international biomechanical test standards, which refers
the worst-case working conditions. However, the intramedullary nails produced
in hollow form are not known to change their properties under these loads due
to the change in cross-sectional thickness. Therefore, the effects of
cross-sectional thickness in intramedullary nails on their static and fatigue
properties were investigated in this study. For this purpose, the hollow
intramedullary nails manufactured from Grade 23 Ti6Al4V ELI with thicknesses of
6.2, 6.7 and 7.2 mm were subjected to static four-point bending and fatigue
tests. After tests, it was observed that both static and fatigue strengths of
nails improved with increasing cross-sectional thickness. Also, it was
determined that a mathematical model to be used in the design process of nails
can be established by using static four-point bending tests results and
theoretical results. Additionally, it was observed that there wasn’t a direct
proportion between increasing cross-sectional thickness and increase rate of
fatigue strength although fatigue properties of intramedullary nails improved
when its cross-sectional thickness increased.

References

  • Bougherara, H., Zdero, R., Miric, M., Shah, S., Hardisty, M., Zalzal, P., & Schemitsch, E. 2009. The biomechanics of the T2 femoral nailing system: a comparison of synthetic femurs with finite element analysis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 223(3), 303-314.
  • Cheung, G., Zalzal, P., Bhandari, M., Spelt, J., & Papini, M. 2004. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Medical engineering & physics, 26(2), 93-108.
  • Duckworth, T., & Blundell, C. M. 2010. Lecture Notes: Orthopaedics and Fractures (Vol. 12): John Wiley & Sons.
  • Eveleigh, R. 1995. A review of biomechanical studies of intramedullary nails. Medical engineering & physics, 17(5), 323-331.
  • International, A. 2016. ASTM F1264 – 16e1 Standard Specification and Test Methods for Intramedullary Fixation Devices. In: ASTM International.
  • Kraemer, M., Schilling, M., Eifler, R., Hering, B., Reifenrath, J., Besdo, S., . . . Weizbauer, A. 2016. Corrosion behavior, biocompatibility and biomechanical stability of a prototype magnesium-based biodegradable intramedullary nailing system. Materials Science and Engineering: C, 59, 129-135.
  • Letechipia, J., Alessi, A., Rodríguez, G., & Asbun, J. 2014. Design and preliminary testing of an active intramedullary nail. Revista de Investigacion Clinica, 66(S1), 70-78.
  • Mehboob, A., & Chang, S.-H. 2018. Biomechanical simulation of healing process of fractured femoral shaft applied by composite intramedullary nails according to fracture configuration. Composite Structures, 185, 81-93.
  • Montanini, R., & Filardi, V. 2010. In vitro biomechanical evaluation of antegrade femoral nailing at early and late postoperative stages. Medical engineering & physics, 32(8), 889-897.
  • Nourisa, J., & Rouhi, G. 2016. Biomechanical evaluation of intramedullary nail and bone plate for the fixation of distal metaphyseal fractures. Journal of the Mechanical Behavior of Biomedical Materials, 56, 34-44.
  • Pazos, L. 2015. Bending Performance Prediction of Intramedullary Nails. Paper presented at the VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014.
  • Perren, S. M. 2002. Evolution of the internal fixation of long bone fractures: the scientific basis of biological internal fixation: choosing a new balance between stability and biology. The Journal of bone and joint surgery. British volume, 84(8), 1093-1110.
  • Samiezadeh, S., Avval, P. T., Fawaz, Z., & Bougherara, H. 2014. Biomechanical assessment of composite versus metallic intramedullary nailing system in femoral shaft fractures: A finite element study. Clinical Biomechanics, 29(7), 803-810.
  • Sha, M., Guo, Z., Fu, J., Li, J., Fan Yuan, C., Shi, L., & Jun Li, S. 2009. The effects of nail rigidity on fracture healing in rats with osteoporosis. Acta orthopaedica, 80(1), 135-138.
  • Shih, K.-S., Hsu, C.-C., & Hsu, T.-P. 2012. A biomechanical investigation of the effects of static fixation and dynamization after interlocking femoral nailing: a finite element study. Journal of Trauma and Acute Care Surgery, 72(2), E46-E53.
  • Timoshenko, S., & MacCullough, G. H. 1949. Elements of strength of materials.
  • Utvåg, S., & Reikerås, O. 1998. Effects of nail rigidity on fracture healing. Archives of orthopaedic and trauma surgery, 118(1-2), 7-13.
  • Wanzl, M., Foehr, P., Schreiber, U., Burgkart, R. H., & Lenich, A. 2016. Biomechanical testing to evaluate the cut-through resistance of intramedullary nails for the proximal humerus. Injury, 47, S20-S24.
  • Wolff, J. 1986. The law of bone remodelling. Translated by P. Maquet and R. Furlong. New York, S pringer, 1(9), 8.

İntramedüller Çivilerin Statik ve Dinamik Eğilme Özelliklerinin Deneysel ve Teorik Olarak İncelenmesi

Year 2019, Volume: 12 Issue: 2, 595 - 606, 31.08.2019
https://doi.org/10.18185/erzifbed.454431

Abstract

Kemik iliği içerisine
yerleştirilerek uzun kemiklerin tedavisinde kullanılan intramedüller çivilerden
en büyük beklenti kemik iyileşmesi süresince hasara uğramamaları ve yeterli yük
dağılımına olanak sağlamalarıdır. Ticari olarak farklı pek çok türde
intramedüller çivi olmakla birlikte bu çiviler içerisinde en çok kullanılan
türlerden biri silindirik kesitli içi boş olan türleridir. Ayrıca,
intramedüller çivilerin en kötü koşullarda çalışmasını referans alan birçok
uluslararası biyomekanik test standardında statik ve dinamik eğilme yükleri
dikkate alınmaktadır. Ancak, içi boş şekilde üretilen intramedüller çivilerin,
kesit kalınlığının değişimi sebebi ile bu yükler altında özelliklerinin ne
yönde değişeceği bilinmemektedir. Bu sebeple, bu çalışmada, intramedüller
çivilerde kesit etkisinin intramedüller çivilerinin statik ve yorulma
dayanımları üzerindeki etkileri incelenmiştir. Bu amaçla, Grade 23 Ti6Al4V ELI
malzemeden imal edilen 6.2, 6.7 ve 7.2 mm kesit kalınlığına sahip içi boş
geometrideki intramedüller çiviler statik dört noktadan eğme ve yorulma
testlerine tabii tutulmuşlar. Testler sonrasında, intramedüller çivilerde kesit
kalınlığı arttıkça hem statik hem de yorulma dayanımlarının arttığı
belirlenmiştir. Bununla birlikte, statik dört noktadan eğilme deneyleri
sonucunda elde edilen sonuçlar ile teorik olarak hesaplanan değerler kullanılarak;
intramedüller çivilerin tasarımı aşamasında kullanılabilecek matematiksel bir
model oluşturulabileceği belirlenmiştir. Ayrıca, intramedüller çivilerde kesit
kalınlığı arttıkça yorulma dayanımının da arttığı ancak artan kesit
kalınlığındaki artış oranı ile yorulma dayanımındaki artışın doğru orantılı
olmadığı gözlemlenmiştir.

References

  • Bougherara, H., Zdero, R., Miric, M., Shah, S., Hardisty, M., Zalzal, P., & Schemitsch, E. 2009. The biomechanics of the T2 femoral nailing system: a comparison of synthetic femurs with finite element analysis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 223(3), 303-314.
  • Cheung, G., Zalzal, P., Bhandari, M., Spelt, J., & Papini, M. 2004. Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading. Medical engineering & physics, 26(2), 93-108.
  • Duckworth, T., & Blundell, C. M. 2010. Lecture Notes: Orthopaedics and Fractures (Vol. 12): John Wiley & Sons.
  • Eveleigh, R. 1995. A review of biomechanical studies of intramedullary nails. Medical engineering & physics, 17(5), 323-331.
  • International, A. 2016. ASTM F1264 – 16e1 Standard Specification and Test Methods for Intramedullary Fixation Devices. In: ASTM International.
  • Kraemer, M., Schilling, M., Eifler, R., Hering, B., Reifenrath, J., Besdo, S., . . . Weizbauer, A. 2016. Corrosion behavior, biocompatibility and biomechanical stability of a prototype magnesium-based biodegradable intramedullary nailing system. Materials Science and Engineering: C, 59, 129-135.
  • Letechipia, J., Alessi, A., Rodríguez, G., & Asbun, J. 2014. Design and preliminary testing of an active intramedullary nail. Revista de Investigacion Clinica, 66(S1), 70-78.
  • Mehboob, A., & Chang, S.-H. 2018. Biomechanical simulation of healing process of fractured femoral shaft applied by composite intramedullary nails according to fracture configuration. Composite Structures, 185, 81-93.
  • Montanini, R., & Filardi, V. 2010. In vitro biomechanical evaluation of antegrade femoral nailing at early and late postoperative stages. Medical engineering & physics, 32(8), 889-897.
  • Nourisa, J., & Rouhi, G. 2016. Biomechanical evaluation of intramedullary nail and bone plate for the fixation of distal metaphyseal fractures. Journal of the Mechanical Behavior of Biomedical Materials, 56, 34-44.
  • Pazos, L. 2015. Bending Performance Prediction of Intramedullary Nails. Paper presented at the VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014.
  • Perren, S. M. 2002. Evolution of the internal fixation of long bone fractures: the scientific basis of biological internal fixation: choosing a new balance between stability and biology. The Journal of bone and joint surgery. British volume, 84(8), 1093-1110.
  • Samiezadeh, S., Avval, P. T., Fawaz, Z., & Bougherara, H. 2014. Biomechanical assessment of composite versus metallic intramedullary nailing system in femoral shaft fractures: A finite element study. Clinical Biomechanics, 29(7), 803-810.
  • Sha, M., Guo, Z., Fu, J., Li, J., Fan Yuan, C., Shi, L., & Jun Li, S. 2009. The effects of nail rigidity on fracture healing in rats with osteoporosis. Acta orthopaedica, 80(1), 135-138.
  • Shih, K.-S., Hsu, C.-C., & Hsu, T.-P. 2012. A biomechanical investigation of the effects of static fixation and dynamization after interlocking femoral nailing: a finite element study. Journal of Trauma and Acute Care Surgery, 72(2), E46-E53.
  • Timoshenko, S., & MacCullough, G. H. 1949. Elements of strength of materials.
  • Utvåg, S., & Reikerås, O. 1998. Effects of nail rigidity on fracture healing. Archives of orthopaedic and trauma surgery, 118(1-2), 7-13.
  • Wanzl, M., Foehr, P., Schreiber, U., Burgkart, R. H., & Lenich, A. 2016. Biomechanical testing to evaluate the cut-through resistance of intramedullary nails for the proximal humerus. Injury, 47, S20-S24.
  • Wolff, J. 1986. The law of bone remodelling. Translated by P. Maquet and R. Furlong. New York, S pringer, 1(9), 8.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Halim Kovacı 0000-0002-9053-3593

Publication Date August 31, 2019
Published in Issue Year 2019 Volume: 12 Issue: 2

Cite

APA Kovacı, H. (2019). İntramedüller Çivilerin Statik ve Dinamik Eğilme Özelliklerinin Deneysel ve Teorik Olarak İncelenmesi. Erzincan University Journal of Science and Technology, 12(2), 595-606. https://doi.org/10.18185/erzifbed.454431