Research Article
BibTex RIS Cite
Year 2024, Volume: 17 Issue: 1, 55 - 68, 28.03.2024
https://doi.org/10.18185/erzifbed.1302579

Abstract

References

  • [1] Ren, Z., Zhu, B., Xia, J., Ming, M., Zhang, S., Zhi, X., Chen, S., Zhang, W., (2023) High quality factor infrared notch filter with compact electromagnetically induced transparency metamaterial structure, Materials Letters, 343, 134349.
  • [2] Wang, P., Zhong, S., Lin, M., Lin, C., Lin, T., Gao, M., Zhao, C., Li, X., Wu, X., (2022) Signally enhanced piezo-photocatalysis of Bi0.5Na0.5TiO3/MWCNTs composite for degradation of rhodamine B, Chemosphere, 308, 136596.
  • [3] Xu, D., Ma, H., (2021) Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis, Journal of Cleaner Production, 313, 127758.
  • [4] Kong, H., Li, H., Wang, H., Li, S., Lu, B., Zhao, J., Cai, Q., (2023) Fe-Mo-O doping g-C3N4 exfoliated composite for removal of rhodamine B by advanced oxidation and photocatalysis, Applied Surface Science, 610, 155544.
  • [5] Ashok, B., Ramesh, K., Madhu, D., Nagesh, T., Vijaya Kumar, B., Upender, G., (2023) Characterization and photocatalysis of visible light driven Z-scheme Bi2WO6/Bi2MoO6
  • [6] Mittal, H., Al Alili, A., Morajkar, P. P., Alhassan, S. M., (2021) Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye, Journal of Molecular Liquids, 323, 115034.
  • [7] Khumalo, N. P., Nthunya, L. N., De Canck, E., Derese, S., Verliefde, A. R., Kuvarega, A. T., Mamba, B. B., Mhlanga, S. D. Dlamini, D. S., (2019) Congo red dye removal by direct membrane distillation using PVDF/PTFE membrane, Separation and Purification Technology, 211, 578- 586.
  • [8] Menon, P., Anantha Singh, T. S., Pani, N., Nidheesh, P. V., (2021) Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater, Chemosphere, 269, 128739.
  • [9] Tekin, D., Tekin, T., Kiziltas, H., (2020) Synthesis and characterization of TiO2 and Ag/TiO2 thin-film photocatalysts and their efficiency in the photocatalytic degradation kinetics of Orange G dyestuff, 198, 376- 385.
  • [10] Giwa, A., Yusuf, A., Balogun, H. A., Sambudi, N. S., Bilad, M. R., Adeyemi, I., Chakraborty, S., Curcio, S., (2021) Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review, Process Safety and Environmental Protection, 146, 220- 256.
  • [11] Pera-Titus, M., García-Molina, V., Baños, M. A., Giménez, J., Esplugas, S., (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review, Applied Catalysis B: Environmental, 47(4), 219- 256.
  • [12] Caglar, B., Keles Guner, E., Ersoy, S., Caglar, S., Özdemir, A. O., Özdokur, K. V., Doğan, B., İçer, F., Çırak, Ç., (2021) Bi2S3 nanorods decorated on bentonite nanocomposite for enhanced visible-light-driven photocatalytic performance towards degradation of organic dyes, Journal of Alloys and Compounds, 885, 160964.
  • [13] Caglar, B., Keles Guner, E., Özdokur, K. V., Özdemir, A. O. İçer, F., Caglar, S., Doğan, B., Beşer, B. M. Çırak, Ç., Tabak, A., Ersoy, S., (2021) Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction, Journal of Photochemistry and Photobiology A: Chemistry, 418, 113400.
  • [14] Chen, X., Wu, Z., Liu, D., Gao, Z., (2017) Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes, Nanoscale Research Letters, 12(1), 1-10.
  • [15] Tao, C., Jia, Q., Han, B., Ma, Z., (2020) Tunable selectivity of radical generation over TiO2 for photocatalysis, Chemical Engineering Science, 214, 115438.
  • [16] Sahu, K., Choudhary, S., Khan, S. A., Pandey, A., Mohapatra, S., (2019) Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films, Nano-Structures & Nano-Objects, 17, 92- 102.
  • [17] Dey, P. C., Das, R., (2020) Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 231, 118122.
  • [18] Ma, Y., Li, J., Cai, J., Zhong, L., Lang, Y., Ma, Q., (2022) Z-scheme g-C3N4/ZnS heterojunction photocatalyst: One-pot synthesis, interfacial structure regulation, and improved photocatalysis activity for bisphenol A, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 653, 130027.
  • [19] Palanisamy, G., Al-Shaalan, N. H., Bhuvaneswari, K., Bharathi, G., Bharath, G., Pazhanivel, T., Sathishkumar, V. E., Arumugam, M. K., Pasha, S. K. K., Habila, M. A., El- Marghany, A., (2021) An efficient and magnetically recoverable g-C3N4/ZnS/CoFe2O4 nanocomposite for sustainable photodegradation of organic dye under UV–visible light illumination, Environmental Research, 201, 111429.
  • [20] Danish, M., Muneer, M., (2021) Excellent visible-light-driven Ni-ZnS/g-C3N4 photocatalyst for enhanced pollutants degradation performance: Insight into the photocatalytic mechanism and adsorption isotherm, Applied Surface Science, 563, 150262.
  • [21] Yan, Y., Yang, M., Wang, C., Liu, E., Hu, X., Fan, J., (2019) Defected ZnS/bulk g–C3N4 heterojunction with enhanced photocatalytic activity for dyes oxidation and Cr (VI) reduction, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582, 123861.
  • [22] Liu, Y., Ding, S., Xu, J., Zhang, H., Yang, S., Duan, X., Sun, H., Wang, S., (2017) Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core–shell structure for visible-light photocatalytic degradation, Chinese Journal of Catalysis, 38(6), 1052- 1062.
  • [23] Chakrabarti, S., Dutta, B. K., (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, Journal of Hazardous Materials, 112(3), 269- 278.

Photocatalytic Performances of ZnS/g-C3N4 Nanocomposites with Different Mass Ratios

Year 2024, Volume: 17 Issue: 1, 55 - 68, 28.03.2024
https://doi.org/10.18185/erzifbed.1302579

Abstract

In this study, we prepared a series of ZnS/graphitic-C3N4 nanocomposites in various mass percentages and morphological properties of all the nanocomposites were examined by utilizing SEM/EDX technique. The photocatalytic performances of ZnS/graphitic-C3N4 nanocomposites were evaluated by degradation of Rhodamine B molecules under visible light. The photocatalytic performances of all nanocomposites under various photocatalyst dosages and initial Rhodamine B concentrations were further investigated for determination of optimal conditions.the obtained results indicated that ZnS/graphitic-C3N4 nanocomposites show almost 2 times higher photocatalaytic performances than pure graphitic-C3N4 and ZnS nanoparticles. The scavenger studies showed that the superoxide radicals had a major role in the photodegradation and the photodegradation of Rhodamine B follows the pseudo-first-order kinetic.

References

  • [1] Ren, Z., Zhu, B., Xia, J., Ming, M., Zhang, S., Zhi, X., Chen, S., Zhang, W., (2023) High quality factor infrared notch filter with compact electromagnetically induced transparency metamaterial structure, Materials Letters, 343, 134349.
  • [2] Wang, P., Zhong, S., Lin, M., Lin, C., Lin, T., Gao, M., Zhao, C., Li, X., Wu, X., (2022) Signally enhanced piezo-photocatalysis of Bi0.5Na0.5TiO3/MWCNTs composite for degradation of rhodamine B, Chemosphere, 308, 136596.
  • [3] Xu, D., Ma, H., (2021) Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis, Journal of Cleaner Production, 313, 127758.
  • [4] Kong, H., Li, H., Wang, H., Li, S., Lu, B., Zhao, J., Cai, Q., (2023) Fe-Mo-O doping g-C3N4 exfoliated composite for removal of rhodamine B by advanced oxidation and photocatalysis, Applied Surface Science, 610, 155544.
  • [5] Ashok, B., Ramesh, K., Madhu, D., Nagesh, T., Vijaya Kumar, B., Upender, G., (2023) Characterization and photocatalysis of visible light driven Z-scheme Bi2WO6/Bi2MoO6
  • [6] Mittal, H., Al Alili, A., Morajkar, P. P., Alhassan, S. M., (2021) Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye, Journal of Molecular Liquids, 323, 115034.
  • [7] Khumalo, N. P., Nthunya, L. N., De Canck, E., Derese, S., Verliefde, A. R., Kuvarega, A. T., Mamba, B. B., Mhlanga, S. D. Dlamini, D. S., (2019) Congo red dye removal by direct membrane distillation using PVDF/PTFE membrane, Separation and Purification Technology, 211, 578- 586.
  • [8] Menon, P., Anantha Singh, T. S., Pani, N., Nidheesh, P. V., (2021) Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater, Chemosphere, 269, 128739.
  • [9] Tekin, D., Tekin, T., Kiziltas, H., (2020) Synthesis and characterization of TiO2 and Ag/TiO2 thin-film photocatalysts and their efficiency in the photocatalytic degradation kinetics of Orange G dyestuff, 198, 376- 385.
  • [10] Giwa, A., Yusuf, A., Balogun, H. A., Sambudi, N. S., Bilad, M. R., Adeyemi, I., Chakraborty, S., Curcio, S., (2021) Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review, Process Safety and Environmental Protection, 146, 220- 256.
  • [11] Pera-Titus, M., García-Molina, V., Baños, M. A., Giménez, J., Esplugas, S., (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review, Applied Catalysis B: Environmental, 47(4), 219- 256.
  • [12] Caglar, B., Keles Guner, E., Ersoy, S., Caglar, S., Özdemir, A. O., Özdokur, K. V., Doğan, B., İçer, F., Çırak, Ç., (2021) Bi2S3 nanorods decorated on bentonite nanocomposite for enhanced visible-light-driven photocatalytic performance towards degradation of organic dyes, Journal of Alloys and Compounds, 885, 160964.
  • [13] Caglar, B., Keles Guner, E., Özdokur, K. V., Özdemir, A. O. İçer, F., Caglar, S., Doğan, B., Beşer, B. M. Çırak, Ç., Tabak, A., Ersoy, S., (2021) Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction, Journal of Photochemistry and Photobiology A: Chemistry, 418, 113400.
  • [14] Chen, X., Wu, Z., Liu, D., Gao, Z., (2017) Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes, Nanoscale Research Letters, 12(1), 1-10.
  • [15] Tao, C., Jia, Q., Han, B., Ma, Z., (2020) Tunable selectivity of radical generation over TiO2 for photocatalysis, Chemical Engineering Science, 214, 115438.
  • [16] Sahu, K., Choudhary, S., Khan, S. A., Pandey, A., Mohapatra, S., (2019) Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films, Nano-Structures & Nano-Objects, 17, 92- 102.
  • [17] Dey, P. C., Das, R., (2020) Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 231, 118122.
  • [18] Ma, Y., Li, J., Cai, J., Zhong, L., Lang, Y., Ma, Q., (2022) Z-scheme g-C3N4/ZnS heterojunction photocatalyst: One-pot synthesis, interfacial structure regulation, and improved photocatalysis activity for bisphenol A, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 653, 130027.
  • [19] Palanisamy, G., Al-Shaalan, N. H., Bhuvaneswari, K., Bharathi, G., Bharath, G., Pazhanivel, T., Sathishkumar, V. E., Arumugam, M. K., Pasha, S. K. K., Habila, M. A., El- Marghany, A., (2021) An efficient and magnetically recoverable g-C3N4/ZnS/CoFe2O4 nanocomposite for sustainable photodegradation of organic dye under UV–visible light illumination, Environmental Research, 201, 111429.
  • [20] Danish, M., Muneer, M., (2021) Excellent visible-light-driven Ni-ZnS/g-C3N4 photocatalyst for enhanced pollutants degradation performance: Insight into the photocatalytic mechanism and adsorption isotherm, Applied Surface Science, 563, 150262.
  • [21] Yan, Y., Yang, M., Wang, C., Liu, E., Hu, X., Fan, J., (2019) Defected ZnS/bulk g–C3N4 heterojunction with enhanced photocatalytic activity for dyes oxidation and Cr (VI) reduction, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582, 123861.
  • [22] Liu, Y., Ding, S., Xu, J., Zhang, H., Yang, S., Duan, X., Sun, H., Wang, S., (2017) Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core–shell structure for visible-light photocatalytic degradation, Chinese Journal of Catalysis, 38(6), 1052- 1062.
  • [23] Chakrabarti, S., Dutta, B. K., (2004) Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, Journal of Hazardous Materials, 112(3), 269- 278.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Bilge Doğan 0000-0001-7552-3461

Agah Oktay Özdemir 0000-0003-4488-746X

Bülent Çağlar 0000-0002-6087-3685

Eda Keleş Güner 0000-0002-4421-1315

Early Pub Date March 27, 2024
Publication Date March 28, 2024
Published in Issue Year 2024 Volume: 17 Issue: 1

Cite

APA Doğan, B., Özdemir, A. O., Çağlar, B., Keleş Güner, E. (2024). Photocatalytic Performances of ZnS/g-C3N4 Nanocomposites with Different Mass Ratios. Erzincan University Journal of Science and Technology, 17(1), 55-68. https://doi.org/10.18185/erzifbed.1302579