Research Article
BibTex RIS Cite
Year 2024, Volume: 17 Issue: 1, 147 - 163, 28.03.2024
https://doi.org/10.18185/erzifbed.1375233

Abstract

References

  • [1] Petry, N., Boy, E., Wirth, J.P., and Hurrell, R.F., (2015) Review: The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification, Nutrients, 7, 1144–1173. doi: 10.3390/nu7021144. Physiol., 129, 500–15.
  • [2] Pereira, W. J., Melo, A. T. D. O., Coelho, A. S. G., Rodrigues, F. A., Mamidi, S., Alencar, S. A. D., Vianello, R. P., (2020) Genome-wide analysis of the transcriptional response to drought stress in root and leaf of common bean, Genetics and Molecular Biology, 43.
  • [3] Lynch, M., Conery, J. S., (2003) The origins of genome complexity, Science, 302(5649), 1401-1404.
  • [4] Bowman, J. L., Floyd, S. K., Sakakibara, K., (2007) Green genes—comparative genomics of the green branch of life, Cell, 129(2), 229-234.
  • [5] Zhao, J., Favero, D. S., Peng, H., Neff, M. M., (2013) Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain, Proceedings of the National Academy of Sciences, 110(48), E4688-E4697.
  • [6] Goodwin, G. H., Sanders, C., Johns, E. W., (1973) A new group of chromatin‐associated proteins with a high content of acidic and basic amino acids, European Journal of Biochemistry, 38(1), 14-19.
  • [7] Eckner, R., Birnstiel, M. L., (1989) Cloning of cDNAs coding for human HMG I and HMG Y proteins: both are capable of binding to the octamer sequence motif, Nucleic acids research, 17(15), 5947-5959.
  • [8] Wang, H., Leng, X., Yang, J., Zhang, M., Zeng, M., Xu, X., Li, C., (2021) Comprehensive analysis of AHL gene family and their expression under drought stress and ABA treatment in Populus trichocarpa, PeerJ, 9, e10932.
  • [9] Širl, M., Šnajdrová, T., Gutiérrez-Alanís, D., Dubrovsky, J. G., Vielle-Calzada, J. P., Kulich, I., Soukup, A., (2020) At-hook motif nuclear localised protein 18 as a novel modulator of root system architecture, International journal of molecular sciences, 21(5), 1886.
  • [10] Lou, Y., Xu, X. F., Zhu, J., Gu, J. N., Blackmore, S., Yang, Z. N., (2014) The tapetal AHL family protein TEK determines nexine formation in the pollen wall, Nature Communications, 5(1), 1-9.
  • [11] Jin, Y., Luo, Q., Tong, H., Wang, A., Cheng, Z., Tang, J., Zhu, L., (2011) An AT-hook gene is required for palea formation and floral organ number control in rice, Developmental biology, 359(2), 277-288.
  • [12] Xu, Y., Gan, E. S., Ito, T., (2013) The AT-hook/PPC domain protein TEK negatively regulates floral repressors including MAF4 and MAF5, Plant signaling & behavior, 8(8), e25006.
  • [13] Lim, P. O., Kim, Y., Breeze, E., Koo, J. C., Woo, H. R., Ryu, J. S., Nam, H. G., (2007) Overexpression of a chromatin architecture‐controlling AT‐hook protein extends leaf longevity and increases the post‐harvest storage life of plants, The Plant Journal, 52(6), 1140-1153.
  • [14] Matsushita, A., Furumoto, T., Ishida, S., Takahashi, Y., (2007) AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase, Plant physiology, 143(3), 1152-1162.
  • [15] Rashotte, A. M., Carson, S. D., To, J. P., Kieber, J. J., (2003) Expression profiling of cytokinin action in Arabidopsis, Plant Physiology, 132(4), 1998-2011.
  • [16] Bishop, E. H., Kumar, R., Luo, F., Saski, C., Sekhon, R. S., (2020) Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize, Genomics, 112(2), 1233-1244.
  • [17] Zhou, L., Liu, Z., Liu, Y., Kong, D., Li, T., Yu, S., Mei, H., Xu, X., Liu, H., Chen, L., & Luo, L. (2016). A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Scientific reports, 6, 30264. https://doi.org/10.1038/srep30264.
  • [18] Zhou, J., Wang, X., Lee, J. Y., Lee, J. Y., (2013) Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning, The Plant Cell, 25(1), 187-201.
  • [19] Kumar, A., Singh, S., Mishra, A., (2023) Genome-wide identification and analyses of the AHL gene family in rice (Oryza sativa), 3 Biotech, 13(7), 248.
  • [20] Zhao, L., Lü, Y., Chen, W., Yao, J., Li, Y., Li, Q., Zhang, Y., (2020) Genome-wide identification and analyses of the AHL gene family in cotton (Gossypium), BMC genomics, 21(1), 1-14.
  • [21] Machaj, G., Grzebelus, D., (2021) Characteristics of the AT-hook motif containing nuclear localized (AHL) genes in carrot provides insight into their role in plant growth and storage root development, Genes, 12(5), 764.
  • [22] Wang, M., Chen, B., Zhou, W., Xie, L., Wang, L., Zhang, Y., Zhang, Q. (2021). Genome-wide identification and expression analysis of the AT-hook Motif Nuclear Localized gene family in soybean. BMC Genomics, 22(1), 361.
  • [23] Li, X., He, H., Wang, H., Wu, X., Wang, H., Mao, J., (2021) Identification and expression analysis of the AHL gene family in grape (Vitis vinifera), Plant Gene, 26, 100285.
  • [24] Zhang, W. M., Fang, D., Cheng, X. Z., Cao, J., Tan, X. L., (2021) Insights Into the Molecular Evolution of AT-Hook Motif Nuclear Localization Genes in Brassica napus, Frontiers in Plant Science, 12.
  • [25] Zhang, X., Li, J., Cao, Y., Huang, J., Duan, Q., (2023) Genome-Wide Identification and Expression Analysis under Abiotic Stress of BrAHL Genes in Brassica rapa, International Journal of Molecular Sciences, 24(15), 12447.
  • [26] Zhao, J., Xu, E., Wang, Q., (2023) Dissection of AT-Hook Motif Nuclear-Localized Genes and Their Potential Functions in Peach Growth and Development, Forests, 14(7), 1404.
  • [27] Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jackson, S. A., (2014) A reference genome for common bean and genome-wide analysis of dual domestications, Nature genetics, 46(7), 707-713.
  • [28] Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Huala, E. (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools, Nucleic Acids Research, 40(D1), D1202-D1210.
  • [29] Zhao, J., Favero, D. S., Qiu, J., Roalson, E. H., Neff, M. M., (2014) Insights into the evolution and diversification of the AT-hook Motif Nuclear Localized gene family in land plants, BMC plant biology, 14(1), 1-19.
  • [30] Goodstein, D.M., Shu S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., Rokhsar, D.S. (2012) Phytozome: a comparative platform for green plant genomics, Nucleic Acids Research. 40(D1), D1178-D1186.
  • [31] Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., Finn, R.D., Bateman A. (2020) Pfam: The protein families database in 2021, Nucleic Acids Research, 49, D412-D419.
  • [32] Letunic, I., Khedkar, S., Bork, P. (2021) SMART: recent updates, new developments and status in 2020”, Nucleic Acids Research, 49, D458–D460.
  • [33] Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Research, 25, 4876-4882.
  • [34] Letunic, I., Bork, P. (2021) Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation, Nucleic Acids Research, 49, W293–W296.
  • [35] Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A. (2005) Protein Identification and Analysis Tools on the Expasy Server, The Proteomics Protocols Handbook, Humana Press.
  • [36] Hu, B., Jin, J.¸ Guo, A.Y., Zhang, H., Luo, J., Gao, G. (2015) GSDS 2.0: an upgraded gene feature visualization server, Bioinformatics, 31, 1296-1297.
  • [37] Voorrips, R.E. (2002) MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77–78.
  • [38] Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rombauts, S. (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences, Nucleic acids research, 30(1), 325-327.
  • [39] Bailey, T.L., Williams, N., Misleh, C., Li, W.W. (2006) MEME: discovering and analyzing DNA and protein sequence motifs, Nucleic Acids Research, 34, W369-W373.
  • [40] Chen, C., Chen, H.¸ Zhang, Y., Thomas, H.R., Frank, M.H., He, Y.¸ Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data, Molecular Plant, 13(8), 1194-1202, 2020.
  • [41] Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., Jensen, L.J., Mering, C.V. (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Research, 47(D1), D607–D613.
  • [42] Hiz, M. C., Canher, B., Niron, H., Turet, M., (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions, PloS one, 9(3), e92598.
  • [43] Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., Wold, B., (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nature methods, 5(7), 621-628.
  • [44] Luna, A., Elloumi, F., Varma, S., Wang, Y., Rajapakse, V.N., Aladjem, M.I., Robert, J., Sander, C., Pommier, Y., Reinhold, W.C. (2021) CellMiner Cross-Database (CellMinerCDB) version 1.2: Exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Research, 49(D1), D1083-D1093.
  • [45] Bishop, E. H., Kumar, R., Luo, F., Saski, C., & Sekhon, R. S. (2020) Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize. Genomics, 112(2), 1233-1244.
  • [46] Rakhimzhanova, A., Kasapoğlu, A.G., Sapakova, A.¸ İlhan, E., Zharmukhametova, R., Turan, M., Zekenova, L.¸ Muslu, S., Kazhygeldiyeva, L., Aydın, M., Çiltaş, A. (2023) Expression analysis and characterization of the CPP gene family of Melatonin-treated common bean cultivars under different abiotic stresses, South African Journal of Botany, 160, 282-294.

Genome-Wide Analysis and Characterization of the AHL Gene Family in Common Beans (Phaseolus vulgaris L.)

Year 2024, Volume: 17 Issue: 1, 147 - 163, 28.03.2024
https://doi.org/10.18185/erzifbed.1375233

Abstract

Küçük bir DNA bağlayıcı protein motifi olan AT-kanca motifi nükleer lokalize ailesi (AHL), bir transkripsiyon faktörü olarak görev yapar ve tüm düzenli dikot ve monokot kara bitkilerinde bulunur. AHL, bitki büyüme ve gelişme süreçlerini ve çevresel streslere tepki mekanizmasını etkileyen bir transkripsiyon faktörüdür. P. vulgaris genomunda in silico araçları kullanılarak 41 Pvul-AHL gen ailesi tanımlandı. Pvul-AHL proteinlerinin amino asit uzunlukları 167 ile 422 arasında değişmektedir. Bu gen ailesinin molekül ağırlıkları 18,19 kDa ile 45,12 kDa arasında değişmektedir. AHL proteinlerinin izoelektrik noktaları (pI) 4,5 ile 10,03 arasında değişir. Pvul-AHL genleri fasulyenin 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ve 11 numaralı kromozomlarına yayılmış olup, en fazla sayıda gen 6 ve 8 numaralı kromozomlarda bulunmaktadır. AHL gen ailesinin fasulyede oynadığı biyolojik rolleri incelemek için çok önemli bir çerçeve. Gelecekteki fonksiyonel çalışmalar, bu araştırmadan elde edilen bilgiler sonucunda fasulyedeki AHL genlerinin nasıl çalıştığını daha iyi anlayabilecektir.

References

  • [1] Petry, N., Boy, E., Wirth, J.P., and Hurrell, R.F., (2015) Review: The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification, Nutrients, 7, 1144–1173. doi: 10.3390/nu7021144. Physiol., 129, 500–15.
  • [2] Pereira, W. J., Melo, A. T. D. O., Coelho, A. S. G., Rodrigues, F. A., Mamidi, S., Alencar, S. A. D., Vianello, R. P., (2020) Genome-wide analysis of the transcriptional response to drought stress in root and leaf of common bean, Genetics and Molecular Biology, 43.
  • [3] Lynch, M., Conery, J. S., (2003) The origins of genome complexity, Science, 302(5649), 1401-1404.
  • [4] Bowman, J. L., Floyd, S. K., Sakakibara, K., (2007) Green genes—comparative genomics of the green branch of life, Cell, 129(2), 229-234.
  • [5] Zhao, J., Favero, D. S., Peng, H., Neff, M. M., (2013) Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain, Proceedings of the National Academy of Sciences, 110(48), E4688-E4697.
  • [6] Goodwin, G. H., Sanders, C., Johns, E. W., (1973) A new group of chromatin‐associated proteins with a high content of acidic and basic amino acids, European Journal of Biochemistry, 38(1), 14-19.
  • [7] Eckner, R., Birnstiel, M. L., (1989) Cloning of cDNAs coding for human HMG I and HMG Y proteins: both are capable of binding to the octamer sequence motif, Nucleic acids research, 17(15), 5947-5959.
  • [8] Wang, H., Leng, X., Yang, J., Zhang, M., Zeng, M., Xu, X., Li, C., (2021) Comprehensive analysis of AHL gene family and their expression under drought stress and ABA treatment in Populus trichocarpa, PeerJ, 9, e10932.
  • [9] Širl, M., Šnajdrová, T., Gutiérrez-Alanís, D., Dubrovsky, J. G., Vielle-Calzada, J. P., Kulich, I., Soukup, A., (2020) At-hook motif nuclear localised protein 18 as a novel modulator of root system architecture, International journal of molecular sciences, 21(5), 1886.
  • [10] Lou, Y., Xu, X. F., Zhu, J., Gu, J. N., Blackmore, S., Yang, Z. N., (2014) The tapetal AHL family protein TEK determines nexine formation in the pollen wall, Nature Communications, 5(1), 1-9.
  • [11] Jin, Y., Luo, Q., Tong, H., Wang, A., Cheng, Z., Tang, J., Zhu, L., (2011) An AT-hook gene is required for palea formation and floral organ number control in rice, Developmental biology, 359(2), 277-288.
  • [12] Xu, Y., Gan, E. S., Ito, T., (2013) The AT-hook/PPC domain protein TEK negatively regulates floral repressors including MAF4 and MAF5, Plant signaling & behavior, 8(8), e25006.
  • [13] Lim, P. O., Kim, Y., Breeze, E., Koo, J. C., Woo, H. R., Ryu, J. S., Nam, H. G., (2007) Overexpression of a chromatin architecture‐controlling AT‐hook protein extends leaf longevity and increases the post‐harvest storage life of plants, The Plant Journal, 52(6), 1140-1153.
  • [14] Matsushita, A., Furumoto, T., Ishida, S., Takahashi, Y., (2007) AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase, Plant physiology, 143(3), 1152-1162.
  • [15] Rashotte, A. M., Carson, S. D., To, J. P., Kieber, J. J., (2003) Expression profiling of cytokinin action in Arabidopsis, Plant Physiology, 132(4), 1998-2011.
  • [16] Bishop, E. H., Kumar, R., Luo, F., Saski, C., Sekhon, R. S., (2020) Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize, Genomics, 112(2), 1233-1244.
  • [17] Zhou, L., Liu, Z., Liu, Y., Kong, D., Li, T., Yu, S., Mei, H., Xu, X., Liu, H., Chen, L., & Luo, L. (2016). A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Scientific reports, 6, 30264. https://doi.org/10.1038/srep30264.
  • [18] Zhou, J., Wang, X., Lee, J. Y., Lee, J. Y., (2013) Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning, The Plant Cell, 25(1), 187-201.
  • [19] Kumar, A., Singh, S., Mishra, A., (2023) Genome-wide identification and analyses of the AHL gene family in rice (Oryza sativa), 3 Biotech, 13(7), 248.
  • [20] Zhao, L., Lü, Y., Chen, W., Yao, J., Li, Y., Li, Q., Zhang, Y., (2020) Genome-wide identification and analyses of the AHL gene family in cotton (Gossypium), BMC genomics, 21(1), 1-14.
  • [21] Machaj, G., Grzebelus, D., (2021) Characteristics of the AT-hook motif containing nuclear localized (AHL) genes in carrot provides insight into their role in plant growth and storage root development, Genes, 12(5), 764.
  • [22] Wang, M., Chen, B., Zhou, W., Xie, L., Wang, L., Zhang, Y., Zhang, Q. (2021). Genome-wide identification and expression analysis of the AT-hook Motif Nuclear Localized gene family in soybean. BMC Genomics, 22(1), 361.
  • [23] Li, X., He, H., Wang, H., Wu, X., Wang, H., Mao, J., (2021) Identification and expression analysis of the AHL gene family in grape (Vitis vinifera), Plant Gene, 26, 100285.
  • [24] Zhang, W. M., Fang, D., Cheng, X. Z., Cao, J., Tan, X. L., (2021) Insights Into the Molecular Evolution of AT-Hook Motif Nuclear Localization Genes in Brassica napus, Frontiers in Plant Science, 12.
  • [25] Zhang, X., Li, J., Cao, Y., Huang, J., Duan, Q., (2023) Genome-Wide Identification and Expression Analysis under Abiotic Stress of BrAHL Genes in Brassica rapa, International Journal of Molecular Sciences, 24(15), 12447.
  • [26] Zhao, J., Xu, E., Wang, Q., (2023) Dissection of AT-Hook Motif Nuclear-Localized Genes and Their Potential Functions in Peach Growth and Development, Forests, 14(7), 1404.
  • [27] Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jackson, S. A., (2014) A reference genome for common bean and genome-wide analysis of dual domestications, Nature genetics, 46(7), 707-713.
  • [28] Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Huala, E. (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools, Nucleic Acids Research, 40(D1), D1202-D1210.
  • [29] Zhao, J., Favero, D. S., Qiu, J., Roalson, E. H., Neff, M. M., (2014) Insights into the evolution and diversification of the AT-hook Motif Nuclear Localized gene family in land plants, BMC plant biology, 14(1), 1-19.
  • [30] Goodstein, D.M., Shu S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., Rokhsar, D.S. (2012) Phytozome: a comparative platform for green plant genomics, Nucleic Acids Research. 40(D1), D1178-D1186.
  • [31] Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G.A., Sonnhammer, E.L.L., Tosatto, S.C.E., Paladin, L., Raj, S., Richardson, L.J., Finn, R.D., Bateman A. (2020) Pfam: The protein families database in 2021, Nucleic Acids Research, 49, D412-D419.
  • [32] Letunic, I., Khedkar, S., Bork, P. (2021) SMART: recent updates, new developments and status in 2020”, Nucleic Acids Research, 49, D458–D460.
  • [33] Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Research, 25, 4876-4882.
  • [34] Letunic, I., Bork, P. (2021) Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation, Nucleic Acids Research, 49, W293–W296.
  • [35] Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A. (2005) Protein Identification and Analysis Tools on the Expasy Server, The Proteomics Protocols Handbook, Humana Press.
  • [36] Hu, B., Jin, J.¸ Guo, A.Y., Zhang, H., Luo, J., Gao, G. (2015) GSDS 2.0: an upgraded gene feature visualization server, Bioinformatics, 31, 1296-1297.
  • [37] Voorrips, R.E. (2002) MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77–78.
  • [38] Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rombauts, S. (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences, Nucleic acids research, 30(1), 325-327.
  • [39] Bailey, T.L., Williams, N., Misleh, C., Li, W.W. (2006) MEME: discovering and analyzing DNA and protein sequence motifs, Nucleic Acids Research, 34, W369-W373.
  • [40] Chen, C., Chen, H.¸ Zhang, Y., Thomas, H.R., Frank, M.H., He, Y.¸ Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data, Molecular Plant, 13(8), 1194-1202, 2020.
  • [41] Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P., Jensen, L.J., Mering, C.V. (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Research, 47(D1), D607–D613.
  • [42] Hiz, M. C., Canher, B., Niron, H., Turet, M., (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions, PloS one, 9(3), e92598.
  • [43] Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., Wold, B., (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nature methods, 5(7), 621-628.
  • [44] Luna, A., Elloumi, F., Varma, S., Wang, Y., Rajapakse, V.N., Aladjem, M.I., Robert, J., Sander, C., Pommier, Y., Reinhold, W.C. (2021) CellMiner Cross-Database (CellMinerCDB) version 1.2: Exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Research, 49(D1), D1083-D1093.
  • [45] Bishop, E. H., Kumar, R., Luo, F., Saski, C., & Sekhon, R. S. (2020) Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize. Genomics, 112(2), 1233-1244.
  • [46] Rakhimzhanova, A., Kasapoğlu, A.G., Sapakova, A.¸ İlhan, E., Zharmukhametova, R., Turan, M., Zekenova, L.¸ Muslu, S., Kazhygeldiyeva, L., Aydın, M., Çiltaş, A. (2023) Expression analysis and characterization of the CPP gene family of Melatonin-treated common bean cultivars under different abiotic stresses, South African Journal of Botany, 160, 282-294.
There are 46 citations in total.

Details

Primary Language English
Subjects Plant Cell and Molecular Biology
Journal Section Makaleler
Authors

Yaren Bozkurt 0009-0003-0213-5398

Merve Yüce 0000-0002-0113-7071

Esra Yaprak 0000-0002-8753-494X

Ayşe Gül Kasapoğlu 0000-0002-6447-4921

Emre İlhan 0000-0002-8404-7900

Murat Turan 0000-0003-2900-1755

Murat Aydın 0000-0003-1091-0609

Ertan Yıldırım 0000-0003-3369-0645

Early Pub Date March 27, 2024
Publication Date March 28, 2024
Submission Date October 12, 2023
Acceptance Date November 18, 2023
Published in Issue Year 2024 Volume: 17 Issue: 1

Cite

APA Bozkurt, Y., Yüce, M., Yaprak, E., Kasapoğlu, A. G., et al. (2024). Genome-Wide Analysis and Characterization of the AHL Gene Family in Common Beans (Phaseolus vulgaris L.). Erzincan University Journal of Science and Technology, 17(1), 147-163. https://doi.org/10.18185/erzifbed.1375233