Research Article
BibTex RIS Cite
Year 2024, Issue: SUIC, 37 - 51, 31.12.2024
https://doi.org/10.18185/erzifbed.1533652

Abstract

References

  • [1] Republic of Türkiye Ministry of Industry and Technology, & PwC. (2023, October). A low carbon pathway for the steel sector in the Republic of Türkiye. Republic of Türkiye Ministry of Industry and Technology.
  • [2] Mac Dowell, N., Fennell, P. S., Shah, N., & Maitland, G. C. (2017). The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, 7(4), 243– 249. https://doi.org/10.1038/nclimate3231
  • [3] Garcia, G., Arriola, E., Chen, W. H., & De Luna, M. D. (2021). A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability. Energy, 217, 119384. https://doi.org/10.1016/j.energy.2020.119384
  • [4] Dalena, F., Senatore, A., Marino, A., Gordano, A., Basile, M., & Basile, A. (2018). Methanol production and applications: An overview. In Methanol (pp. 3–28). https://doi.org/10.1016/B978-0-444-63903-5.00001-7
  • [5] Hoseiny, S., Zare, Z., Mirvakili, A., Setoodeh, P., & Rahimpour, M. R. (2016). Simulation-based optimization of operating parameters for methanol synthesis process: Application of response surface methodology for statistical analysis. Journal of Natural Gas Science and Engineering, 34, 439–448. https://doi.org/10.1016/j.jngse.2016.07.040
  • [6] Ren, B. P., Xu, Y. P., Huang, Y. W., She, C., & Sun, B. (2023). Methanol production from natural gas reforming and CO2 capturing process: Simulation, design, and techno- economic analysis. Energy, 263, 125879. https://doi.org/10.1016/j.energy.2023.125879
  • [7] Schwiderowski, P., Ruland, H., & Muhler, M. (2022). Current developments in CO2 hydrogenation towards methanol: A review related to industrial application. Current Opinion in Green and Sustainable Chemistry, 38, 100688. https://doi.org/10.1016/j.cogsc.2022.100688
  • [8] Li, J., Ma, X., Liu, H., & Zhang, X. (2018). Life cycle assessment and economic analysis of methanol production from coke oven gas compared with coal and natural gas routes. Journal of Cleaner Production, 185, 299–308. https://doi.org/10.1016/j.jclepro.2018.02.261
  • [9] Lundgren, J., Ekbom, T., Hulteberg, C., Larsson, M., Grip, C. E., Nilsson, L., & Tunå, P. (2013). Methanol production from steel-work off-gases and biomass-based synthesis gas. Applied Energy, 112, 431–439. https://doi.org/10.1016/j.apenergy.2012.12.065
  • [10] Jeong, J. H., Kim, S., Park, M. J., & Lee, W. B. (2022). Multi-objective optimization of a methanol synthesis process: CO2 emission vs. economics. Korean Journal of Chemical Engineering, 39(7), 1709–1716. https://doi.org/10.1007/s11814- 022-1077-2
  • [11] Lee, J. S., Lee, K. H., Lee, S. Y., & Kim, Y. G. (1993). A comparative study of methanol synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 catalyst. Journal of Catalysis, 144(2), 414–424. https://doi.org/10.1006/jcat.1993.1335
  • [12] Sun, Q., Zhang, Y., Chen, H., Deng, J., Wu, D., & Chen, S. (1997). A novel process for the preparation of Cu/ZnO and Cu/ZnO/Al2O3 ultrafine catalyst: Structure, surface properties, and activity for methanol synthesis from CO2+H2. Journal of Catalysis, 167(1), 92–105. https://doi.org/10.1006/jcat.1997.1575
  • [13] Lee, J. S., Han, S. H., Kim, H. G., Lee, K. H., & Kim, Y. G. (2000). Effects of space velocity on methanol synthesis from CO2/CO/H2 over Cu/ZnO/Al2O3 catalyst. Korean Journal of Chemical Engineering, 17(3), 332–336. https://doi.org/10.1007/BF02698687
  • [14] Yin, X., & Leung, Y. C. (2004). Characteristics of the synthesis of methanol using biomass-derived syngas. Energy & Fuels, 19(1), 305–310. https://doi.org/10.1021/ef040027p
  • [15] An, X., Zuo, Y., Zhang, Q., & Wang, J. (2009). Methanol synthesis from CO2 hydrogenation with a Cu/Zn/Al/Zr fibrous catalyst. Chinese Journal of Chemical Engineering, 17(1), 88–94. https://doi.org/10.1016/S1004-9541(09)60026-5
  • [16] Samiee, L., & Ghasemi Kafrudi, E. (2021). Assessment of different kinetic models of carbon dioxide transformation to methanol via hydrogenation, over a Cu/ZnO/Al2O3 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 133(2), 801– 823. https://doi.org/10.1007/s11144-021-02010-4
  • [17] Adil, A., Prasad, B., & Rao, L. (2023). Methanol generation from bio-syngas: Experimental analysis and modeling studies. Environment, Development and Sustainability, 26(8), 21503–21527. https://doi.org/10.1007/s10668-023-02902-5
  • [18] Shirdel, S., Valand, S., Fazli, F., Winther-Sørensen, B., Aromada, S. A., Karunarathne, S., & Øi, L. E. (2022). Sensitivity analysis and cost estimation of a CO2 capture plant in Aspen HYSYS. ChemEngineering, 6(2), 28. https://doi.org/10.3390/chemengineering6020028
  • [19] Graaf, G. H., & Beenackers, A. A. C. M. (1996). Comparison of two-phase and three-phase methanol synthesis processes. Chemical Engineering and Processing: Process Intensification, 35(6), 413–427. https://doi.org/10.1016/S0255- 2701(96)04127-9
  • [20] Budhraja, N., Pal, A., & Mishra, R. S. (2023). Optimizing methanol reforming parameters for enhanced hydrogen selectivity in an Aspen HYSYS simulator using response surface methodology. Energy Technology, 11(7), 2300203. https://doi.org/10.1002/ente.202300203
  • [21] Rahman, D. (2012). Kinetic modeling of methanol synthesis from carbon monoxide, carbon dioxide, and hydrogen over a Cu catalyst [Master’s thesis, San Jose State University].
  • [22] Zhang, Y., Sun, Q., Deng, J., Wu, D., & Chen, S. (1997). A h igh activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: Preparation and catalytic properties. Applied Catalysis A: General, 158(1–2), 105–120. https://doi.org/10.1016/S0926- 860X(96)00288-0
  • [23] Sizgek, G. D., Curry-Hyde, H. E., & Wainwright, M. S. (1994). Methanol synthesis over copper and ZnO-promoted copper surfaces. Applied Catalysis A: General, 115(1), 15–28. https://doi.org/10.1016/0926-860X(94)80057-4

Assessment of Methanol Production Potential from Industrial By-Product Gases

Year 2024, Issue: SUIC, 37 - 51, 31.12.2024
https://doi.org/10.18185/erzifbed.1533652

Abstract

As global efforts intensify to mitigate climate change, innovative strategies are being explored to convert industrial by-product gases into valuable commodities, thereby contributing to sustainable practices and reducing carbon footprints. This study focuses on the potential for methanol production from carbon monoxide (CO) and carbon dioxide (CO2) present in industrial gases, using hydrogen as a reactant. Kinetic models entered in to ASPEN HYSYS were employed to predict conversion rates, which were subsequently validated through laboratory-scale experiments. The highest conversion rates achieved were 69% for CO and 10% for CO2, highlighting the feasibility of converting waste gases into methanol, a key component in the circular economy.

Supporting Institution

Erdemir

References

  • [1] Republic of Türkiye Ministry of Industry and Technology, & PwC. (2023, October). A low carbon pathway for the steel sector in the Republic of Türkiye. Republic of Türkiye Ministry of Industry and Technology.
  • [2] Mac Dowell, N., Fennell, P. S., Shah, N., & Maitland, G. C. (2017). The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, 7(4), 243– 249. https://doi.org/10.1038/nclimate3231
  • [3] Garcia, G., Arriola, E., Chen, W. H., & De Luna, M. D. (2021). A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability. Energy, 217, 119384. https://doi.org/10.1016/j.energy.2020.119384
  • [4] Dalena, F., Senatore, A., Marino, A., Gordano, A., Basile, M., & Basile, A. (2018). Methanol production and applications: An overview. In Methanol (pp. 3–28). https://doi.org/10.1016/B978-0-444-63903-5.00001-7
  • [5] Hoseiny, S., Zare, Z., Mirvakili, A., Setoodeh, P., & Rahimpour, M. R. (2016). Simulation-based optimization of operating parameters for methanol synthesis process: Application of response surface methodology for statistical analysis. Journal of Natural Gas Science and Engineering, 34, 439–448. https://doi.org/10.1016/j.jngse.2016.07.040
  • [6] Ren, B. P., Xu, Y. P., Huang, Y. W., She, C., & Sun, B. (2023). Methanol production from natural gas reforming and CO2 capturing process: Simulation, design, and techno- economic analysis. Energy, 263, 125879. https://doi.org/10.1016/j.energy.2023.125879
  • [7] Schwiderowski, P., Ruland, H., & Muhler, M. (2022). Current developments in CO2 hydrogenation towards methanol: A review related to industrial application. Current Opinion in Green and Sustainable Chemistry, 38, 100688. https://doi.org/10.1016/j.cogsc.2022.100688
  • [8] Li, J., Ma, X., Liu, H., & Zhang, X. (2018). Life cycle assessment and economic analysis of methanol production from coke oven gas compared with coal and natural gas routes. Journal of Cleaner Production, 185, 299–308. https://doi.org/10.1016/j.jclepro.2018.02.261
  • [9] Lundgren, J., Ekbom, T., Hulteberg, C., Larsson, M., Grip, C. E., Nilsson, L., & Tunå, P. (2013). Methanol production from steel-work off-gases and biomass-based synthesis gas. Applied Energy, 112, 431–439. https://doi.org/10.1016/j.apenergy.2012.12.065
  • [10] Jeong, J. H., Kim, S., Park, M. J., & Lee, W. B. (2022). Multi-objective optimization of a methanol synthesis process: CO2 emission vs. economics. Korean Journal of Chemical Engineering, 39(7), 1709–1716. https://doi.org/10.1007/s11814- 022-1077-2
  • [11] Lee, J. S., Lee, K. H., Lee, S. Y., & Kim, Y. G. (1993). A comparative study of methanol synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 catalyst. Journal of Catalysis, 144(2), 414–424. https://doi.org/10.1006/jcat.1993.1335
  • [12] Sun, Q., Zhang, Y., Chen, H., Deng, J., Wu, D., & Chen, S. (1997). A novel process for the preparation of Cu/ZnO and Cu/ZnO/Al2O3 ultrafine catalyst: Structure, surface properties, and activity for methanol synthesis from CO2+H2. Journal of Catalysis, 167(1), 92–105. https://doi.org/10.1006/jcat.1997.1575
  • [13] Lee, J. S., Han, S. H., Kim, H. G., Lee, K. H., & Kim, Y. G. (2000). Effects of space velocity on methanol synthesis from CO2/CO/H2 over Cu/ZnO/Al2O3 catalyst. Korean Journal of Chemical Engineering, 17(3), 332–336. https://doi.org/10.1007/BF02698687
  • [14] Yin, X., & Leung, Y. C. (2004). Characteristics of the synthesis of methanol using biomass-derived syngas. Energy & Fuels, 19(1), 305–310. https://doi.org/10.1021/ef040027p
  • [15] An, X., Zuo, Y., Zhang, Q., & Wang, J. (2009). Methanol synthesis from CO2 hydrogenation with a Cu/Zn/Al/Zr fibrous catalyst. Chinese Journal of Chemical Engineering, 17(1), 88–94. https://doi.org/10.1016/S1004-9541(09)60026-5
  • [16] Samiee, L., & Ghasemi Kafrudi, E. (2021). Assessment of different kinetic models of carbon dioxide transformation to methanol via hydrogenation, over a Cu/ZnO/Al2O3 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 133(2), 801– 823. https://doi.org/10.1007/s11144-021-02010-4
  • [17] Adil, A., Prasad, B., & Rao, L. (2023). Methanol generation from bio-syngas: Experimental analysis and modeling studies. Environment, Development and Sustainability, 26(8), 21503–21527. https://doi.org/10.1007/s10668-023-02902-5
  • [18] Shirdel, S., Valand, S., Fazli, F., Winther-Sørensen, B., Aromada, S. A., Karunarathne, S., & Øi, L. E. (2022). Sensitivity analysis and cost estimation of a CO2 capture plant in Aspen HYSYS. ChemEngineering, 6(2), 28. https://doi.org/10.3390/chemengineering6020028
  • [19] Graaf, G. H., & Beenackers, A. A. C. M. (1996). Comparison of two-phase and three-phase methanol synthesis processes. Chemical Engineering and Processing: Process Intensification, 35(6), 413–427. https://doi.org/10.1016/S0255- 2701(96)04127-9
  • [20] Budhraja, N., Pal, A., & Mishra, R. S. (2023). Optimizing methanol reforming parameters for enhanced hydrogen selectivity in an Aspen HYSYS simulator using response surface methodology. Energy Technology, 11(7), 2300203. https://doi.org/10.1002/ente.202300203
  • [21] Rahman, D. (2012). Kinetic modeling of methanol synthesis from carbon monoxide, carbon dioxide, and hydrogen over a Cu catalyst [Master’s thesis, San Jose State University].
  • [22] Zhang, Y., Sun, Q., Deng, J., Wu, D., & Chen, S. (1997). A h igh activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: Preparation and catalytic properties. Applied Catalysis A: General, 158(1–2), 105–120. https://doi.org/10.1016/S0926- 860X(96)00288-0
  • [23] Sizgek, G. D., Curry-Hyde, H. E., & Wainwright, M. S. (1994). Methanol synthesis over copper and ZnO-promoted copper surfaces. Applied Catalysis A: General, 115(1), 15–28. https://doi.org/10.1016/0926-860X(94)80057-4
There are 23 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Sciences
Journal Section Makaleler
Authors

Didem Inceoglu 0000-0002-0722-1645

Selver Sakallı 0009-0007-9686-7651

Zeynep Afacan This is me 0009-0003-0605-3699

Erdal Ünal This is me 0000-0002-8259-4177

Işıl Işık Gülsaç 0000-0002-2308-306X

Ömer Orçun Er This is me 0000-0002-7986-9037

Özlem Ataç 0000-0001-5005-0311

Publication Date December 31, 2024
Submission Date August 16, 2024
Acceptance Date December 3, 2024
Published in Issue Year 2024 Issue: SUIC

Cite

APA Inceoglu, D., Sakallı, S., Afacan, Z., Ünal, E., et al. (2024). Assessment of Methanol Production Potential from Industrial By-Product Gases. Erzincan University Journal of Science and Technology(SUIC), 37-51. https://doi.org/10.18185/erzifbed.1533652