Research Article
BibTex RIS Cite

An Encoding –Decoding Algorithm Based on k-Fermat and k-Mersenne Numbers

Year 2025, Volume: 18 Issue: 2, 521 - 536, 31.08.2025
https://doi.org/10.18185/erzifbed.1592108

Abstract

In this study, we present an encoding/decoding algorithm using k-Fermat and k-Mersenne numbers. We use Fermat Q-matrices and Mersenne R-matrices, the terms of these matrices are composed of k-Fermat and k-Mersenne numbers, respectively, and look like Fibonacci Q-matrix. In this method, which we will obtain by creating square matrices, we obtain different keys and messages. The purpose of this process is not only to increase the reliability of information security technology, but also to provide the ability to verify information at a high rate.

References

  • [1] Uçar, S., Taş, N., and Özgür, N. Y. (2019). A new application to coding theory via Fibonacci and Lucas numbers. Mathematical Sciences and Applications E-Notes, 7(1), 62-70.
  • [2] Prasad, B. (2016). Coding theory on Lucas p numbers. Discrete Mathematics, Algorithms and Applications, 8(04), 1650074.
  • [3] Dişkaya, O., Avaroğlu, E., Menken, H., & Emsal, A. (2022). A New Encryption Algorithm Based on Fibonacci Polynomials and Matrices. Traitement du Signal, 39(5), 1453.
  • [4] Shtayat, J., and Al-Kateeb, A. (2019). An Encoding-Decoding algorithm based on Padovan numbers. arXiv preprint arXiv:1907.02007.
  • [5] Eser, E., Kuloglu, B., & Özkan, E. (2024). An Encoding-Decoding Algorithm Based on Fermat And Mersenne Numbers. Applied Mathematics E-Notes, 24, 274-282.
  • [6] Wang, Z., Wang, L., Liu, S., & Wei, G. (2017). Encoding-decoding-based control and filtering of networked systems: Insights, developments and opportunities. IEEE/CAA Journal of Automatica Sinica, 5(1), 3-18.
  • [7] Robinson, R. M. (1954). Mersenne and Fermat numbers. Proceedings of the American Mathematical Society, 5(5), 842-846.
  • [8] He, T. X., Shiue, P. (2019). On the Applications of the Linear Recurrence Relationships to Pseudoprimes. Journal of Mathematical Research with Applications, 39(6), 563.
  • [9] Kizilirmak, G.Ö., Taşci, D. (2022). On the Bi-Periodic Mersenne Sequence. Fundamental journal of mathematics and applications (Online). [10] Ochalik, P., Włoch, A. (2018). On generalized Mersenne numbers, their interpretations and matrix generators.Annales Universitatis Mariae Curie-Skłodowska, sectio A– Mathematica, 72 (1).
  • [11] Uysal, M., Kumarı, M., Kuloğlu, B., Prasad, K., & Özkan, E., (2025). On the Hyperbolic K-Mersenne and K-Mersenne-Lucas Octonions. Kragujevac Journal of Mathematics, 49, 5, 765-779.
  • [12] Kuloğlu, B., Eser, E., & Özkan, E., (2023). The r-circulant Matrices Associated with k- Fermat and k-Mersenne Numbers. Wseas Transactions on Mathematics, 22, 531-543.
  • [13] Kamenetsky, D., & Teo, C. H. (2007). Graphical Models for Minesweeper Project Report. [14] Fowler, A., & Young, A. (2004). Minesweeper: A statistical and computational analysis.
  • [15] Becerra, D. J. (2015). Algorithmic approaches to playing Minesweeper (Doctoral dissertation).
  • [16] Asci, M., Aydinyuz, S. (2022). k-Order Fibonacci polynomials on AES-like cryptology. CMES-Computer Modeling in Engineering & Sciences, 131(1), 277-293. [17] Karaçam, C., Algül, F.N., Tavit, D. (2021). Transmission of time and position variable cryptology in Fibonacci and Lucas number series with music. Journal of Mathematical Sciences and Modelling, 4(1): 38-50.
  • [18] Anderson, R. (1994). On Fibonacci keystream generators. In International Workshop on Fast Software Encryption, pp. 346-352.
  • [19] Koshy, T. (2019). Fibonacci and Lucas Numbers with Applications, Volume 2. John Wiley & Sons.
  • [20] Vajda, S. (2008). Fibonacci and Lucas numbers, and the golden section: theory and applications. Courier Corporation.
  • [21] Diskaya, O., Avaroglu, E., & Menken, H. (2020). The classical AES-like cryptology via the Fibonacci polynomial matrix. Turkish Journal of Engineering, 4(3), 123-128.

k-Fermat ve k -Mersenne Sayılarına Dayalı Kodlama-Kod Çözme Algoritması

Year 2025, Volume: 18 Issue: 2, 521 - 536, 31.08.2025
https://doi.org/10.18185/erzifbed.1592108

Abstract

Bu çalışmada k-Fermat ve k-Mersenne sayılarını kullanarak bir kodlama/kod çözme algoritması sunuyoruz. Fermat Q-matrisleri ve Mersenne R-matrislerini kullanıyoruz. Bu matrislerin terimleri sırasıyla k-Fermat ve k-Mersenne sayılarından oluşuyor ve bu matrisler Fibonacci Q-matrisine benziyor. Kare matrisler oluşturarak elde edeceğimiz bu yöntemde farklı anahtarlar ve mesajlar elde ediyoruz. Bu işlemin amacı yalnızca bilgi güvenliği teknolojisinin güvenilirliğini artırmak değil, aynı zamanda bilgilerin yüksek oranda doğrulanabilmesini sağlamaktır.

References

  • [1] Uçar, S., Taş, N., and Özgür, N. Y. (2019). A new application to coding theory via Fibonacci and Lucas numbers. Mathematical Sciences and Applications E-Notes, 7(1), 62-70.
  • [2] Prasad, B. (2016). Coding theory on Lucas p numbers. Discrete Mathematics, Algorithms and Applications, 8(04), 1650074.
  • [3] Dişkaya, O., Avaroğlu, E., Menken, H., & Emsal, A. (2022). A New Encryption Algorithm Based on Fibonacci Polynomials and Matrices. Traitement du Signal, 39(5), 1453.
  • [4] Shtayat, J., and Al-Kateeb, A. (2019). An Encoding-Decoding algorithm based on Padovan numbers. arXiv preprint arXiv:1907.02007.
  • [5] Eser, E., Kuloglu, B., & Özkan, E. (2024). An Encoding-Decoding Algorithm Based on Fermat And Mersenne Numbers. Applied Mathematics E-Notes, 24, 274-282.
  • [6] Wang, Z., Wang, L., Liu, S., & Wei, G. (2017). Encoding-decoding-based control and filtering of networked systems: Insights, developments and opportunities. IEEE/CAA Journal of Automatica Sinica, 5(1), 3-18.
  • [7] Robinson, R. M. (1954). Mersenne and Fermat numbers. Proceedings of the American Mathematical Society, 5(5), 842-846.
  • [8] He, T. X., Shiue, P. (2019). On the Applications of the Linear Recurrence Relationships to Pseudoprimes. Journal of Mathematical Research with Applications, 39(6), 563.
  • [9] Kizilirmak, G.Ö., Taşci, D. (2022). On the Bi-Periodic Mersenne Sequence. Fundamental journal of mathematics and applications (Online). [10] Ochalik, P., Włoch, A. (2018). On generalized Mersenne numbers, their interpretations and matrix generators.Annales Universitatis Mariae Curie-Skłodowska, sectio A– Mathematica, 72 (1).
  • [11] Uysal, M., Kumarı, M., Kuloğlu, B., Prasad, K., & Özkan, E., (2025). On the Hyperbolic K-Mersenne and K-Mersenne-Lucas Octonions. Kragujevac Journal of Mathematics, 49, 5, 765-779.
  • [12] Kuloğlu, B., Eser, E., & Özkan, E., (2023). The r-circulant Matrices Associated with k- Fermat and k-Mersenne Numbers. Wseas Transactions on Mathematics, 22, 531-543.
  • [13] Kamenetsky, D., & Teo, C. H. (2007). Graphical Models for Minesweeper Project Report. [14] Fowler, A., & Young, A. (2004). Minesweeper: A statistical and computational analysis.
  • [15] Becerra, D. J. (2015). Algorithmic approaches to playing Minesweeper (Doctoral dissertation).
  • [16] Asci, M., Aydinyuz, S. (2022). k-Order Fibonacci polynomials on AES-like cryptology. CMES-Computer Modeling in Engineering & Sciences, 131(1), 277-293. [17] Karaçam, C., Algül, F.N., Tavit, D. (2021). Transmission of time and position variable cryptology in Fibonacci and Lucas number series with music. Journal of Mathematical Sciences and Modelling, 4(1): 38-50.
  • [18] Anderson, R. (1994). On Fibonacci keystream generators. In International Workshop on Fast Software Encryption, pp. 346-352.
  • [19] Koshy, T. (2019). Fibonacci and Lucas Numbers with Applications, Volume 2. John Wiley & Sons.
  • [20] Vajda, S. (2008). Fibonacci and Lucas numbers, and the golden section: theory and applications. Courier Corporation.
  • [21] Diskaya, O., Avaroglu, E., & Menken, H. (2020). The classical AES-like cryptology via the Fibonacci polynomial matrix. Turkish Journal of Engineering, 4(3), 123-128.
There are 18 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Makaleler
Authors

Engin Eser 0000-0001-5965-4162

Bahar Kuloǧlu 0000-0001-7624-8270

Engin Özkan 0000-0002-4188-7248

Early Pub Date August 14, 2025
Publication Date August 31, 2025
Submission Date November 27, 2024
Acceptance Date February 19, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Eser, E., Kuloǧlu, B., & Özkan, E. (2025). An Encoding –Decoding Algorithm Based on k-Fermat and k-Mersenne Numbers. Erzincan University Journal of Science and Technology, 18(2), 521-536. https://doi.org/10.18185/erzifbed.1592108