Research Article
BibTex RIS Cite

A New Topology using HFL for Transformer-Based Multilevel Inverters

Year 2025, Volume: 18 Issue: 2, 326 - 345, 31.08.2025
https://doi.org/10.18185/erzifbed.1641833

Abstract

This paper presents a new hybrid structure for transformer based multilevel inverter (MLI) topologies. The proposed topology integrates an asymmetric multiplexer circuit (push-pull), a high frequency link (HFL) circuit and PUC to produce 11 levels at the output voltage wave. The main structure includes 10 power switches and four rectifier diodes. Simulation results and experimental results confirm that the proposed inverter effectively synthesizes the 11-level AC voltage waveform with low total harmonic distortion (THD). The inverter is tested with 100Ω pure resistive, 30mH and 50mH inductive loads under different load conditions to verify its robustness and operational stability. Loss simulations are performed with PLECS software. The power loss analysis shows that the system operates with an efficiency of 98% in overall performance. The dynamic response of the inverter is analyzed under varying modulation indices and operating frequencies and shows reliable performance over a wide operating range. Due to its high efficiency and reduced component count, the proposed topology is particularly suitable for single-source applications such as renewable energy integration, stand-alone power systems and electric vehicle inverters.

References

  • [1] M. Karakılıç, “A Novel Hexagonal Switched Capacitor Unit (HSCU) Design With Seven-Level Multilevel Inverter Topology,” International Journal of Circuit Theory and Applications, vol. 0, pp. 1–17, Feb. 2025, doi: 10.1002/CTA.4469.
  • [2] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The age of multilevel converters arrives,” IEEE Industrial Electronics Magazine, vol. 2, no. 2, 2008, doi: 10.1109/MIE.2008.923519.
  • [3] R. José et al., “Multilevel converters: An enabling technology for high-poer applications,” Proceedings of the IEEE, vol. 97, no. 11, 2009, doi: 10.1109/JPROC.2009.2030235.
  • [4] E. Kabalcı and A. Boyar, “Multilevel inverter applications for electric vehicle drives,” in Multilevel Inverters: Control Methods and Advanced Power Electronic Applications, 2021. doi: 10.1016/B978-0-323-90217-5.00006-X.
  • [5] A. Nabae, I. Takahashi, and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,” IEEE Trans Ind Appl, vol. IA-17, no. 5, 1981, doi: 10.1109/TIA.1981.4503992.
  • [6] T. A. Meynard and H. Foch, “Multi-Level Choppers for High Voltage Applications,” EPE Journal, vol. 2, no. 1, 1992, doi: 10.1080/09398368.1992.11463285.
  • [7] R. H. Baker and L. H. Bannister, “Electric power converter,” 1975
  • [8] R. Agrawal and S. Jain, “Comparison of reduced part count multilevel inverters (RPC-MLIs) for integration to the grid,” International Journal of Electrical Power and Energy Systems, vol. 84, 2017, doi: 10.1016/j.ijepes.2016.05.011.
  • [9] J. Singh, R. Dahiya, and L. M. Saini, “Recent research on transformer based single DC source multilevel inverter: A review,” 2018. doi: 10.1016/j.rser.2017.10.023.
  • [10] J. Pereda and J. Dixon, “High-frequency link: A solution for using only one DC source in asymmetric cascaded multilevel inverters,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, 2011, doi: 10.1109/TIE.2010.2103532.
  • [11] B. Mahato, K. C. Jana, and P. R. Thakura, “Constant V/f Control and Frequency Control of Isolated Winding Induction Motor Using Nine-Level Three-Phase Inverter,” Iranian Journal of Science and Technology - Transactions of Electrical Engineering, vol. 43, no. 1, 2019, doi: 10.1007/s40998-018-0064-6.
  • [12] S. Haq, S. P. Biswas, M. K. Hosain, M. A. Rahman, M. R. Islam, and S. Jahan, “A modular multilevel converter with an advanced pwm control technique for grid-tied photovoltaic system,” Energies (Basel), vol. 14, no. 2, 2021, doi: 10.3390/en14020331.
  • [13] M. Lee, C. S. Yeh, and J. S. Lai, “A Hybrid Binary-Cascaded Multilevel Inverter with Simple Floating-Capacitor-Voltage Control,” IEEE Trans Power Electron, vol. 36, no. 2, 2021, doi: 10.1109/TPEL.2020.3007122.
  • [14] M. M. Hasan, A. Abu-Siada, S. M. Islam, and M. S. A. Dahidah, “A New Cascaded Multilevel Inverter Topology with Galvanic Isolation,” IEEE Trans Ind Appl, vol. 54, no. 4, 2018, doi: 10.1109/TIA.2018.2818061.
  • [15] A. M. Mahfuz-Ur-Rahman, M. R. Islam, K. M. Muttaqi, and D. Sutanto, “Model Predictive Control for a New Magnetic Linked Multilevel Inverter to Integrate Solar Photovoltaic Systems with the Power Grids,” IEEE Trans Ind Appl, vol. 56, no. 6, 2020, doi: 10.1109/TIA.2020.3024352.
  • [16] M. H. Mondol, S. P. Biswas, and M. K. Hosain, “A new magnetic linked three-phase multilevel inverter with reduced number of switches and balanced DC sources,” Electrical Engineering, vol. 104, no. 2, 2022, doi: 10.1007/s00202-021-01318-1.
  • [17] S. C. S. Junior, C. Jacobina, and E. L. L. Fabricio, “A Single-Phase 35-levels Cascaded PUC Multilevel Inverter Fed by a Single DC-Source,” in 2021 IEEE Energy Conversion Congress and Exposition, ECCE 2021 - Proceedings, 2021. doi: 10.1109/ECCE47101.2021.9595834.
  • [18] S. C. S. Junior, C. B. Jacobina, E. L. L. Fabricio, and A. S. Felinto, “Asymmetric 49-Levels Cascaded MPUC Multilevel Inverter Fed by a Single DC Source,” IEEE Trans Ind Appl, vol. 58, no. 6, 2022, doi: 10.1109/TIA.2022.3202875.
  • [19] H. Hatas and M. N. Almali, “Design and control of bypass diode multilevel inverter using a single DC source,” Electric Power Systems Research, vol. 216, 2023, doi: 10.1016/j.epsr.2022.109039.
  • [20] H. Hatas and M. N. Almali, “Design and control of a novel topology for multilevel inverters using high frequency link,” Electric Power Systems Research, vol. 221, 2023, doi: 10.1016/j.epsr.2023.109458.
  • [21] M. D. Siddique, M. Aslam Husain, A. Iqbal, S. Mekhilef, and A. Riyaz, “Single-Phase 9L Switched-Capacitor Boost Multilevel Inverter (9L-SC-BMLI) Topology,” IEEE Trans Ind Appl, vol. 59, no. 1, 2023, doi: 10.1109/TIA.2022.3208893.
  • [22] W. Lin, J. Zeng, B. Fu, Z. Yan, and J. Liu, “Switched-capacitor Based Seven-level Boost Inverter with a Reduced Number of Devices,” CSEE Journal of Power and Energy Systems, vol. 10, no. 1, pp. 381–391, Jan. 2024, doi: 10.17775/CSEEJPES.2020.02620.
  • [23] M. Zaid, A. R. Moonis, A. Sarwar, A. Iqbal, and M. Tayyab, “Seven-level single-source switched capacitor inverter with triple boosting capability and high reliability,” International Journal of Circuit Theory and Applications, vol. 52, no. 8, pp. 3844–3869, Aug. 2024, doi: 10.1002/CTA.3946.
  • [24] S. Islam, M. Daula Siddique, M. R. Hussan, and A. Iqbal, “Reduced Voltage Stress and Spikes in Source Current of 7-Level Switched-Capacitor Based Multilevel Inverter,” IEEE Access, vol. 11, pp. 74722–74735, 2023, doi: 10.1109/ACCESS.2023.3297496.
  • [25] M. D. Siddique et al., “Single-Phase Boost Switched-Capacitor-Based Multilevel Inverter Topology With Reduced Switching Devices,” IEEE J Emerg Sel Top Power Electron, vol. 10, no. 4, 2022, doi: 10.1109/JESTPE.2021.3129063.
  • [26] S. Islam, D. Siddique, S. Mekhilef, M. Al-Hitmi, and A. Iqbal, “A Switched Capacitor-Based 13-Level Inverter With Reduced Switch Count,” IEEE Trans Ind Appl, vol. 58, no. 6, p. 7373, 2022, doi: 10.1109/TIA.2022.3191302.
  • [27] T. Roy and P. K. Sadhu, “A Step-Up Multilevel Inverter Topology Using Novel Switched Capacitor Converters with Reduced Components,” IEEE Transactions on Industrial Electronics, vol. 68, no. 1, pp. 236–247, Jan. 2021, doi: 10.1109/TIE.2020.2965458.

Transformatör Tabanlı Çok Seviyeli İnvertörler için HFL Kullanan Yeni Bir Topoloji

Year 2025, Volume: 18 Issue: 2, 326 - 345, 31.08.2025
https://doi.org/10.18185/erzifbed.1641833

Abstract

Bu çalışma transformatör tabanlı çok seviyeli evirici (ÇSE) topolojileri için yeni bir hibrit yapı sunar. Önerilen topoloji bir asimetrik çoklayıcı devre (push-pull), bir yüksek frekans bağlantısı (YFB) ve bir PUC devresini entegre ederek çıkış gerilim dalgasında 11 seviye üretir. Ana yapı 10 güç anahtarı ve dört doğrultucu diyot içerir. Simülasyon ve deneysel sonuçlar, önerilen eviricinin düşük toplam harmonik bozulma (THD) ile 11 seviyeli AC gerilim dalga şeklini etkin bir şekilde sentezlediğini doğrulamaktadır. Evirici, 100Ω tam dirençli, 30mH ve 50mH endüktif bileşenli yüklerle farklı yük koşulları altında test edilerek sağlamlığı ve çalışma kararlılığı doğrulanmıştır. Kayıp simülasyonları PLECS yazılımıyla gerçekleştirilir. Yapılan güç kaybı analizleri sistemin genel performansında %98'lik bir verimle çalıştığını gösterir. Eviricinin dinamik tepkisi, değişen modülasyon indeksleri ve çalışma frekansları altında analiz edilmiş ve geniş bir çalışma aralığında güvenilir performans göstermiştir. Yüksek verimliliği ve azaltılmış bileşen sayısı nedeniyle, önerilen topoloji özellikle yenilenebilir enerji entegrasyonu, bağımsız güç sistemleri ve elektrikli araç invertörleri gibi tek kaynaklı uygulamalar için uygundur.

References

  • [1] M. Karakılıç, “A Novel Hexagonal Switched Capacitor Unit (HSCU) Design With Seven-Level Multilevel Inverter Topology,” International Journal of Circuit Theory and Applications, vol. 0, pp. 1–17, Feb. 2025, doi: 10.1002/CTA.4469.
  • [2] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The age of multilevel converters arrives,” IEEE Industrial Electronics Magazine, vol. 2, no. 2, 2008, doi: 10.1109/MIE.2008.923519.
  • [3] R. José et al., “Multilevel converters: An enabling technology for high-poer applications,” Proceedings of the IEEE, vol. 97, no. 11, 2009, doi: 10.1109/JPROC.2009.2030235.
  • [4] E. Kabalcı and A. Boyar, “Multilevel inverter applications for electric vehicle drives,” in Multilevel Inverters: Control Methods and Advanced Power Electronic Applications, 2021. doi: 10.1016/B978-0-323-90217-5.00006-X.
  • [5] A. Nabae, I. Takahashi, and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,” IEEE Trans Ind Appl, vol. IA-17, no. 5, 1981, doi: 10.1109/TIA.1981.4503992.
  • [6] T. A. Meynard and H. Foch, “Multi-Level Choppers for High Voltage Applications,” EPE Journal, vol. 2, no. 1, 1992, doi: 10.1080/09398368.1992.11463285.
  • [7] R. H. Baker and L. H. Bannister, “Electric power converter,” 1975
  • [8] R. Agrawal and S. Jain, “Comparison of reduced part count multilevel inverters (RPC-MLIs) for integration to the grid,” International Journal of Electrical Power and Energy Systems, vol. 84, 2017, doi: 10.1016/j.ijepes.2016.05.011.
  • [9] J. Singh, R. Dahiya, and L. M. Saini, “Recent research on transformer based single DC source multilevel inverter: A review,” 2018. doi: 10.1016/j.rser.2017.10.023.
  • [10] J. Pereda and J. Dixon, “High-frequency link: A solution for using only one DC source in asymmetric cascaded multilevel inverters,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9, 2011, doi: 10.1109/TIE.2010.2103532.
  • [11] B. Mahato, K. C. Jana, and P. R. Thakura, “Constant V/f Control and Frequency Control of Isolated Winding Induction Motor Using Nine-Level Three-Phase Inverter,” Iranian Journal of Science and Technology - Transactions of Electrical Engineering, vol. 43, no. 1, 2019, doi: 10.1007/s40998-018-0064-6.
  • [12] S. Haq, S. P. Biswas, M. K. Hosain, M. A. Rahman, M. R. Islam, and S. Jahan, “A modular multilevel converter with an advanced pwm control technique for grid-tied photovoltaic system,” Energies (Basel), vol. 14, no. 2, 2021, doi: 10.3390/en14020331.
  • [13] M. Lee, C. S. Yeh, and J. S. Lai, “A Hybrid Binary-Cascaded Multilevel Inverter with Simple Floating-Capacitor-Voltage Control,” IEEE Trans Power Electron, vol. 36, no. 2, 2021, doi: 10.1109/TPEL.2020.3007122.
  • [14] M. M. Hasan, A. Abu-Siada, S. M. Islam, and M. S. A. Dahidah, “A New Cascaded Multilevel Inverter Topology with Galvanic Isolation,” IEEE Trans Ind Appl, vol. 54, no. 4, 2018, doi: 10.1109/TIA.2018.2818061.
  • [15] A. M. Mahfuz-Ur-Rahman, M. R. Islam, K. M. Muttaqi, and D. Sutanto, “Model Predictive Control for a New Magnetic Linked Multilevel Inverter to Integrate Solar Photovoltaic Systems with the Power Grids,” IEEE Trans Ind Appl, vol. 56, no. 6, 2020, doi: 10.1109/TIA.2020.3024352.
  • [16] M. H. Mondol, S. P. Biswas, and M. K. Hosain, “A new magnetic linked three-phase multilevel inverter with reduced number of switches and balanced DC sources,” Electrical Engineering, vol. 104, no. 2, 2022, doi: 10.1007/s00202-021-01318-1.
  • [17] S. C. S. Junior, C. Jacobina, and E. L. L. Fabricio, “A Single-Phase 35-levels Cascaded PUC Multilevel Inverter Fed by a Single DC-Source,” in 2021 IEEE Energy Conversion Congress and Exposition, ECCE 2021 - Proceedings, 2021. doi: 10.1109/ECCE47101.2021.9595834.
  • [18] S. C. S. Junior, C. B. Jacobina, E. L. L. Fabricio, and A. S. Felinto, “Asymmetric 49-Levels Cascaded MPUC Multilevel Inverter Fed by a Single DC Source,” IEEE Trans Ind Appl, vol. 58, no. 6, 2022, doi: 10.1109/TIA.2022.3202875.
  • [19] H. Hatas and M. N. Almali, “Design and control of bypass diode multilevel inverter using a single DC source,” Electric Power Systems Research, vol. 216, 2023, doi: 10.1016/j.epsr.2022.109039.
  • [20] H. Hatas and M. N. Almali, “Design and control of a novel topology for multilevel inverters using high frequency link,” Electric Power Systems Research, vol. 221, 2023, doi: 10.1016/j.epsr.2023.109458.
  • [21] M. D. Siddique, M. Aslam Husain, A. Iqbal, S. Mekhilef, and A. Riyaz, “Single-Phase 9L Switched-Capacitor Boost Multilevel Inverter (9L-SC-BMLI) Topology,” IEEE Trans Ind Appl, vol. 59, no. 1, 2023, doi: 10.1109/TIA.2022.3208893.
  • [22] W. Lin, J. Zeng, B. Fu, Z. Yan, and J. Liu, “Switched-capacitor Based Seven-level Boost Inverter with a Reduced Number of Devices,” CSEE Journal of Power and Energy Systems, vol. 10, no. 1, pp. 381–391, Jan. 2024, doi: 10.17775/CSEEJPES.2020.02620.
  • [23] M. Zaid, A. R. Moonis, A. Sarwar, A. Iqbal, and M. Tayyab, “Seven-level single-source switched capacitor inverter with triple boosting capability and high reliability,” International Journal of Circuit Theory and Applications, vol. 52, no. 8, pp. 3844–3869, Aug. 2024, doi: 10.1002/CTA.3946.
  • [24] S. Islam, M. Daula Siddique, M. R. Hussan, and A. Iqbal, “Reduced Voltage Stress and Spikes in Source Current of 7-Level Switched-Capacitor Based Multilevel Inverter,” IEEE Access, vol. 11, pp. 74722–74735, 2023, doi: 10.1109/ACCESS.2023.3297496.
  • [25] M. D. Siddique et al., “Single-Phase Boost Switched-Capacitor-Based Multilevel Inverter Topology With Reduced Switching Devices,” IEEE J Emerg Sel Top Power Electron, vol. 10, no. 4, 2022, doi: 10.1109/JESTPE.2021.3129063.
  • [26] S. Islam, D. Siddique, S. Mekhilef, M. Al-Hitmi, and A. Iqbal, “A Switched Capacitor-Based 13-Level Inverter With Reduced Switch Count,” IEEE Trans Ind Appl, vol. 58, no. 6, p. 7373, 2022, doi: 10.1109/TIA.2022.3191302.
  • [27] T. Roy and P. K. Sadhu, “A Step-Up Multilevel Inverter Topology Using Novel Switched Capacitor Converters with Reduced Components,” IEEE Transactions on Industrial Electronics, vol. 68, no. 1, pp. 236–247, Jan. 2021, doi: 10.1109/TIE.2020.2965458.
There are 27 citations in total.

Details

Primary Language English
Subjects Electrical Machines and Drives
Journal Section Makaleler
Authors

Hasan Hataş 0000-0003-4543-362X

Murat Karakılıç 0000-0001-5323-2583

Early Pub Date August 14, 2025
Publication Date August 31, 2025
Submission Date February 18, 2025
Acceptance Date May 21, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Hataş, H., & Karakılıç, M. (2025). A New Topology using HFL for Transformer-Based Multilevel Inverters. Erzincan University Journal of Science and Technology, 18(2), 326-345. https://doi.org/10.18185/erzifbed.1641833