Research Article
BibTex RIS Cite

Türkiye’de Konut Fiyat Endeksinin Makine Öğrenme Yöntemi ile Tahmini

Year 2024, Volume: 20 Issue: 2, 283 - 298, 30.12.2024

Abstract

Tüketim ve yatırım amaçlı oluşan konut talebi pek çok farklı değişkene bağlı olup konut fiyatı bunlardan en önemlisidir. Bu bağlamda konut arz ve talebinde sağlanacak dengenin önemli belirleyicisi olan fiyatın tahmin edilmesi önem arz etmektedir. Literatürde konut fiyat tahminlemesine yönelik az sayıda çalışma olup yine bunlardan çok azında makine öğrenme tekniği kullanıldığı görülmektedir. Makine öğrenmesi çalışmalarında başarı tahmini seçilen algoritmaya ve öznitelik kombinasyonuna bağlı olmaktadır. Bu bağlamda çalışmanın amacı konut fiyatını en doğru tahmin eden yöntem ve konut fiyatını en çok etkileyen makroekonomik belirleyicilerinin tespit edilmesidir. Çalışmada konut fiyatının belirleyicilerini test etmek üzere 01:2013 ile 05:2023 dönemlerine ait TÜFE, BİST100, Sanayi Üretim Endeksi, Dolar Kuru, Tüketici Güven Endeksi değerleri öznitelik kümesini oluşturmaktadır. Yine çalışmada üç farklı makine öğrenme algoritması kullanılmış olup OMYH kriterine göre en iyi tahmin oranları sırasıyla Karar Ağacı %87,15, Çok katmanlı algılayıcılar %86,56, K-en yakın komşu 82,69 şeklindedir. Karar ağacı algoritmasında, USD/TRY özniteliğinin etkisi %89 ile en çok etkileyen öznitelik olmuş, sırasıyla en çok etkileyen öznitelik ise %7 ile Sanayi Üretim Endeksi (SUE) %1,3, Tüketici Güven Endeksi (TGE) ve % 1,25 ile Tüketici Fiyat Endeksi (TÜFE) özniteliği olmuştur. Diğer özniteliklerin toplam etkisi yaklaşık %1 olarak gerçekleşmiştir.

References

  • Kaynaklar Abidoye, R.B. & Chan, A.P.C. (2017), Modeling Property Values in Nigeria Using Artificial Neural Network. Journal of Property Research, 1-18.
  • Abraham, M. (2016), Determinants of Residential Property Value in New Zeland: A Neural Network Approach, Department of Applied Business, New Zealand Government Institute of Technology (Whitireia). Auckland, 1-24.
  • Adetunji, A.B., Akande, O.N., Ajala, F.A., Oyewo, O., Akande, Y.F., & Oluwadara, G. (2022), House Price Prediction Using Random Forest Machine Learning Technique, Procedia Computer Science, 199, 806-813.
  • Akay, E.Ç., Topal, K.H., Kizilarslan, S. & Bulbul, H. (2019), Forecasting of Turkish Housing Price Index: ARIMA, Random Forest, Arıma-Random Forest. Pressacademia, 10(10), 7-11.
  • Bahmani-Oskooee, M. & Wu, T. (2018), Housing Prices and Real Effective Exchange Rates in 18 OECD Countries: A Bootstrap Multivariate Panel Granger Causality. Economic Analysis and Policy, 60, 119-126.
  • Barut, Z. & Bilgin, T.T. (2023), Konut Fiyatlarının Tahmini için Polinomsal Regresyon ve Yapay Sinir Ağları Yöntemlerinin Uygulamalı Karşılaştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 152-159.
  • Benson, E.D., Hansen, J.L., Schwartz, A.L. & Smersh, G.T. (1999), Canadian/U.S. Exchange Rates and Nonresident Investors: Their Influence on Residential Property Values. Journal of Real Estate Research, 18(3), 433-461
  • Bork, L. & Møller, S.V. (2015), Forecasting House Prices in The 50 States Using Dynamic Model Averaging and Dynamic Model Selection. International Journal of Forecasting, 31(1), 63-78.
  • Burhan, H.A. (2023), Konut Fiyatları Tahmininde Makine Öğrenmesi Sınıflandırma Algoritmalarının Kullanılması: Kütahya Kent Merkezi Örneği. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (76), 221-237.
  • Chen, X., Wei, L., & Xu, J. (2017). House price prediction using LSTM. arXiv preprint arXiv:1709.08432.
  • Çetin, D.T. (2022), Antalya-Isparta-Burdur Bölgesi Konut Fiyat Endeksinin Makroekonomik Göstergeler ve Hisse Senedi Endeksi Kullanılarak Yapay Zeka ile Tahmini. Abant Sosyal Bilimler Dergisi, 22(3), 1363-1380.
  • Davis, M.A. & Heathcote, J. (2005), Housing and ahe Business Cycle. International Economic Review, 46(3), 751-784.
  • Demary, M. (2009), The Link Between Output, İnflation, Monetary Policy and Housing Price Dynamics. Https://Mpra.Ub.Uni-Muenchen.De/15978/, (Erişim Tarihi: 22.05.2023).
  • Doğan, O., Bande, N., Genç, Y., & Akyön, F.Ç. (2022), Keçiören/Ankara Özelinde Konut Rayiç Değerlerinin Yapay Sinir Ağları Metodu Kullanılarak Tahmini. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 2022(35).
  • Ecer, F. (2014), Türkiye’deki Konut Fiyatlarının Tahmininde Hedonik Regresyon Yöntemi ile Yapay Sinir Ağlarının Karşılaştırılması. International Conference on Eurasian Economies, 1-10.
  • EMEÇ. Ş. & TEKİN, D. (2022), Housing Demand Forecasting with Machine Learning Methods. Erzincan University Journal of Science and Technology, 15(Special Issue I), 36-52.
  • Englaund, P. & Ioannides, Y.M. (1997), House Price Dynamics: An International Empirical Perspective. Journal of Housing Economics, 6, 119-136.
  • Gebeşoğlu, P.F. (2019), Housing Price Index Dynamics in Turkey, Special Issue on Applied Economics and Finance. Journal of Yaşar University, 14 (Special Issue), 100-107.
  • Ghojogh, B., & Crowley, M. (2019), The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial. arXiv preprint arXiv:1905.12787.
  • Imandoust, S.B., & Bolandraftar, M. (2013), Application of K-Nearest Neighbor (Knn) Approach for Predicting Economic Events: Theoretical Background. International Journal of Engineering Research and Applications, 3(5), 605-610.
  • Kayakuş, M., Terzioğlu, M., & Yetiz, F. (2022), Forecasting Housing Prices in Turkey by Machine Learning Methods. Aestimum, 80, 33-44.
  • Kotsiantis, S.B. (2013), Decision Trees: A Recent Overview. Artificial Intelligence Review, 39, 261-283. Iacoviello, M. (2000), House Prices and the Macroeconomy in Europe: Results From A Structural VAR Analysis. Lee, B.S. (1992), Causal Relations Among Stock Returns, Interest Rates, Real Activity and Inflation. Journal of Finance, 47, 1591-1603.
  • Mankiw, N.G. (2010), Makroekonomi, (Çeviri Editörü: Ömer Faruk Çolak), Ankara: Efil Yayınevi.
  • Mondal, P., Shit, L., & Goswami, S. (2014), Study of Effectiveness of Time Series Modeling (ARIMA) in Forecasting Stock Prices. International Journal of Computer Science, Engineering and Applications, 4(2), 13.
  • Oral, M., Okatan, E. & Kırbaş, İ. (2021), Makine Öğrenme Yöntemleri Kullanarak Konut Fiyat Tahmini Üzerine Bir Çalışma: Madrid Örneği. In 3 Rd International Young Researchers Student Congress, 263-272.
  • Öner Badurlar, İ. (2008), Türkiye’de Konut Fiyatları ile Makroekonomik Değişkenler Arasındaki İlişkinin Araştırılması. Anadolu Üniversitesi Sosyal Bilimler Dergisi 8(1), 223-238
  • Özkan, G., Yalpir, S. & Uygunol, O. (2007), An Investigation on the Price Estimation of Residable Real-Estates by Using ANN and Regression Methods. In 12th Applied Stochastic Models and Data Analysis International Conference (ASMDA).
  • Park, B., & Bae, J.K. (2015), Using Machine Learning Algorithms for Housing Price Prediction: The Case of Fairfax County, Virginia Housing Data. Expert Systems with Applications, 42(6), 2928-2934.
  • Popescu, M.C., Balas, V.E., Perescu-Popescu, L. & Mastorakis, N. (2009), Multilayer Perceptron and Neural Networks. WSEAS Transactions on Circuits and Systems, 8(7), 579-588.
  • Rovnyak, S., Kretsinger, S., Thorp, J. & Brown, D. (1994), Decision Trees For Real-Time Transient Stability Prediction. IEEE Transactions on Power Systems, 9(3), 1417-1426.
  • Sarker, I. H. (2021), Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160.
  • Shi, S., Mangioni, V., Ge, X. J., Herath, S., Rabhi, F., & Ouysse, R. (2021), House Price Forecasting From Investment Perspectives. Land, 10(10), 1009.
  • Singh, J., & Banerjee, R. (2019), A Study on Single and Multi-Layer Perceptron Neural Network. In 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC) 35-40.
  • Thamarai, M. & Malarvizhi, S.P. (2020), House Price Prediction Modeling Using Machine Learning. International Journal of Information Engineering & Electronic Business, 12(2).
  • Ustalı, N. K., Tosun, N., & Tosun, Ö. (2021), Makine Öğrenmesi Teknikleri ile Hisse Senedi Fiyat Tahmini. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi, 16(1), 1-16.

Estimation of Housing Price Index in Turkey with Machine Learning Method

Year 2024, Volume: 20 Issue: 2, 283 - 298, 30.12.2024

Abstract

The demand for housing formed for consumption and investment purposes depends on many different variables, and the housing price is the most important of them. In this context, it is important to estimate the price, which is an important determinant of the balance to be achieved in housing supply and demand. There are few studies on housing price forecasting in the literature, and again, it is observed that machine learning technique is used in very few of them. In this context, the aim of the study is to determine the method and macroeconomic determinant that most accurately predicts the housing price. In the study, CPI, BIST100, Industrial Production Index, Dollar Exchange Rate, and Consumer Confidence Index values for the periods between 01:2013 and 05:2023 constitute the attribute set to test the determinants of housing price. Again, three different machine learning algorithms were used in the study, and the best prediction rates according to the OMYH criterion are Decision Tree 87.15%, Multilayer sensors 86.56%, and K-nearest neighbor 82.69, respectively. On the other hand, in the Decision tree algorithm, the impact of the USD/TRY attribute was determined as the attribute that affects the most with 89%, and the impact of the other attributes, respectively, was the industrial production index with 7%, the consumer confidence index (CPI) with 1,3% and consumer price index with 1,25%. The total impact of the other features is approximately 1%.

References

  • Kaynaklar Abidoye, R.B. & Chan, A.P.C. (2017), Modeling Property Values in Nigeria Using Artificial Neural Network. Journal of Property Research, 1-18.
  • Abraham, M. (2016), Determinants of Residential Property Value in New Zeland: A Neural Network Approach, Department of Applied Business, New Zealand Government Institute of Technology (Whitireia). Auckland, 1-24.
  • Adetunji, A.B., Akande, O.N., Ajala, F.A., Oyewo, O., Akande, Y.F., & Oluwadara, G. (2022), House Price Prediction Using Random Forest Machine Learning Technique, Procedia Computer Science, 199, 806-813.
  • Akay, E.Ç., Topal, K.H., Kizilarslan, S. & Bulbul, H. (2019), Forecasting of Turkish Housing Price Index: ARIMA, Random Forest, Arıma-Random Forest. Pressacademia, 10(10), 7-11.
  • Bahmani-Oskooee, M. & Wu, T. (2018), Housing Prices and Real Effective Exchange Rates in 18 OECD Countries: A Bootstrap Multivariate Panel Granger Causality. Economic Analysis and Policy, 60, 119-126.
  • Barut, Z. & Bilgin, T.T. (2023), Konut Fiyatlarının Tahmini için Polinomsal Regresyon ve Yapay Sinir Ağları Yöntemlerinin Uygulamalı Karşılaştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(1), 152-159.
  • Benson, E.D., Hansen, J.L., Schwartz, A.L. & Smersh, G.T. (1999), Canadian/U.S. Exchange Rates and Nonresident Investors: Their Influence on Residential Property Values. Journal of Real Estate Research, 18(3), 433-461
  • Bork, L. & Møller, S.V. (2015), Forecasting House Prices in The 50 States Using Dynamic Model Averaging and Dynamic Model Selection. International Journal of Forecasting, 31(1), 63-78.
  • Burhan, H.A. (2023), Konut Fiyatları Tahmininde Makine Öğrenmesi Sınıflandırma Algoritmalarının Kullanılması: Kütahya Kent Merkezi Örneği. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (76), 221-237.
  • Chen, X., Wei, L., & Xu, J. (2017). House price prediction using LSTM. arXiv preprint arXiv:1709.08432.
  • Çetin, D.T. (2022), Antalya-Isparta-Burdur Bölgesi Konut Fiyat Endeksinin Makroekonomik Göstergeler ve Hisse Senedi Endeksi Kullanılarak Yapay Zeka ile Tahmini. Abant Sosyal Bilimler Dergisi, 22(3), 1363-1380.
  • Davis, M.A. & Heathcote, J. (2005), Housing and ahe Business Cycle. International Economic Review, 46(3), 751-784.
  • Demary, M. (2009), The Link Between Output, İnflation, Monetary Policy and Housing Price Dynamics. Https://Mpra.Ub.Uni-Muenchen.De/15978/, (Erişim Tarihi: 22.05.2023).
  • Doğan, O., Bande, N., Genç, Y., & Akyön, F.Ç. (2022), Keçiören/Ankara Özelinde Konut Rayiç Değerlerinin Yapay Sinir Ağları Metodu Kullanılarak Tahmini. Uluslararası İktisadi ve İdari İncelemeler Dergisi, 2022(35).
  • Ecer, F. (2014), Türkiye’deki Konut Fiyatlarının Tahmininde Hedonik Regresyon Yöntemi ile Yapay Sinir Ağlarının Karşılaştırılması. International Conference on Eurasian Economies, 1-10.
  • EMEÇ. Ş. & TEKİN, D. (2022), Housing Demand Forecasting with Machine Learning Methods. Erzincan University Journal of Science and Technology, 15(Special Issue I), 36-52.
  • Englaund, P. & Ioannides, Y.M. (1997), House Price Dynamics: An International Empirical Perspective. Journal of Housing Economics, 6, 119-136.
  • Gebeşoğlu, P.F. (2019), Housing Price Index Dynamics in Turkey, Special Issue on Applied Economics and Finance. Journal of Yaşar University, 14 (Special Issue), 100-107.
  • Ghojogh, B., & Crowley, M. (2019), The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial. arXiv preprint arXiv:1905.12787.
  • Imandoust, S.B., & Bolandraftar, M. (2013), Application of K-Nearest Neighbor (Knn) Approach for Predicting Economic Events: Theoretical Background. International Journal of Engineering Research and Applications, 3(5), 605-610.
  • Kayakuş, M., Terzioğlu, M., & Yetiz, F. (2022), Forecasting Housing Prices in Turkey by Machine Learning Methods. Aestimum, 80, 33-44.
  • Kotsiantis, S.B. (2013), Decision Trees: A Recent Overview. Artificial Intelligence Review, 39, 261-283. Iacoviello, M. (2000), House Prices and the Macroeconomy in Europe: Results From A Structural VAR Analysis. Lee, B.S. (1992), Causal Relations Among Stock Returns, Interest Rates, Real Activity and Inflation. Journal of Finance, 47, 1591-1603.
  • Mankiw, N.G. (2010), Makroekonomi, (Çeviri Editörü: Ömer Faruk Çolak), Ankara: Efil Yayınevi.
  • Mondal, P., Shit, L., & Goswami, S. (2014), Study of Effectiveness of Time Series Modeling (ARIMA) in Forecasting Stock Prices. International Journal of Computer Science, Engineering and Applications, 4(2), 13.
  • Oral, M., Okatan, E. & Kırbaş, İ. (2021), Makine Öğrenme Yöntemleri Kullanarak Konut Fiyat Tahmini Üzerine Bir Çalışma: Madrid Örneği. In 3 Rd International Young Researchers Student Congress, 263-272.
  • Öner Badurlar, İ. (2008), Türkiye’de Konut Fiyatları ile Makroekonomik Değişkenler Arasındaki İlişkinin Araştırılması. Anadolu Üniversitesi Sosyal Bilimler Dergisi 8(1), 223-238
  • Özkan, G., Yalpir, S. & Uygunol, O. (2007), An Investigation on the Price Estimation of Residable Real-Estates by Using ANN and Regression Methods. In 12th Applied Stochastic Models and Data Analysis International Conference (ASMDA).
  • Park, B., & Bae, J.K. (2015), Using Machine Learning Algorithms for Housing Price Prediction: The Case of Fairfax County, Virginia Housing Data. Expert Systems with Applications, 42(6), 2928-2934.
  • Popescu, M.C., Balas, V.E., Perescu-Popescu, L. & Mastorakis, N. (2009), Multilayer Perceptron and Neural Networks. WSEAS Transactions on Circuits and Systems, 8(7), 579-588.
  • Rovnyak, S., Kretsinger, S., Thorp, J. & Brown, D. (1994), Decision Trees For Real-Time Transient Stability Prediction. IEEE Transactions on Power Systems, 9(3), 1417-1426.
  • Sarker, I. H. (2021), Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160.
  • Shi, S., Mangioni, V., Ge, X. J., Herath, S., Rabhi, F., & Ouysse, R. (2021), House Price Forecasting From Investment Perspectives. Land, 10(10), 1009.
  • Singh, J., & Banerjee, R. (2019), A Study on Single and Multi-Layer Perceptron Neural Network. In 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC) 35-40.
  • Thamarai, M. & Malarvizhi, S.P. (2020), House Price Prediction Modeling Using Machine Learning. International Journal of Information Engineering & Electronic Business, 12(2).
  • Ustalı, N. K., Tosun, N., & Tosun, Ö. (2021), Makine Öğrenmesi Teknikleri ile Hisse Senedi Fiyat Tahmini. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi, 16(1), 1-16.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Econometric and Statistical Methods, Macroeconomics (Other)
Journal Section Articles
Authors

Serkan Nas 0000-0002-0040-3091

Ayşe Ergin Ünal 0000-0001-6551-8933

Early Pub Date December 26, 2024
Publication Date December 30, 2024
Acceptance Date July 30, 2024
Published in Issue Year 2024 Volume: 20 Issue: 2

Cite

APA Nas, S., & Ergin Ünal, A. (2024). Türkiye’de Konut Fiyat Endeksinin Makine Öğrenme Yöntemi ile Tahmini. Ekonomik Ve Sosyal Araştırmalar Dergisi, 20(2), 283-298.

Adress: Bolu Abant İzzet Baysal Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonomik ve Sosyal Araştırmalar Dergisi 14030 Gölköy-BOLU

Tel: 0 374 254 10 00 / 14 86 Fax: 0 374 253 45 21 E-mail: iibfdergi@ibu.edu.tr

ISSN (Publish) : 1306-2174 ISSN (Electronic) : 1306-3553