Review
BibTex RIS Cite

Effect of Fiber Consumption on Cortisol Levels and HPA Axis in Pregnancy

Year 2024, Volume: 7 Issue: 1, 187 - 194, 05.04.2024
https://doi.org/10.5281/zenodo.10929553

Abstract

Stress, which develops as an adaptation to the fight-or-flight response during the perception of a noxious stimulus, stimulates a range of physiological responses that may be harmful under certain conditions (including the nervous, endocrine, and immune systems). Among these responses, hyperactivity of the hypothalamic-pituitary-adrenal axis is one of the most common neurobiological changes in depressed patients. Depression, especially during pregnancy, is an insidious public health problem that jeopardizes mental health. In cases where it is not taken seriously, cases leading to suicide may be encountered. Negative consequences of prenatal depression are seen not only in the mother but also in the child in the future. Pregnancy-related depression is usually due to multiple causes and is associated with many different physiological factors. Physiological shifts that occur during pregnancy cause changes in the maternal stress protection mechanism such as hypothalamic-pituitary-adrenal axis dysregulation and excessive secretion of cortisol. Excessive cortisol secretion, which is associated with the body's response to stress, is associated with depressive symptoms during pregnancy. Recent studies emphasize that certain dietary factors, especially dietary fibers, weaken the stress hormone. Dietary fiber taken into the body is digested by intestinal bacteria and ensures the release of short-chain fatty acids. These metabolites are thought to affect many different neurological functions, including the hypothalamus-pituitary-adrenal axis. This review article aims to determine the changes made by fiber consumption, which is thought to play a role in cortisol release.

References

  • Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., & Flier, J. S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382(6588), 250–252. https://doi.org/10.1038/382250a0
  • Basu, T., Maguire, J., & Salpekar, J. A. (2021). Hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Neuroscience letters. 135618. https://doi.org/10.1016/j.neulet.2020.135618
  • Bates, S. H., & Myers, M. G., Jr (2003). The role of leptin receptor signaling in feeding and neuroendocrine function. Trends in endocrinology and metabolism: TEM, 14(10), 447–452. https://doi.org/10.1016/j.tem.2003.10.003
  • Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017). Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biological psychiatry, 82(7), 472–487. https://doi.org/10.1016/j.biopsych.2016.12.031
  • Căpriţă, A., Căpriţă, R., Simulescu, V. O. G., & Drehe, R. M. (2010). Dietary fiber: Chemical and functional properties. Journal of Agroalimentary Processes and Technologies, 16(4), 406-416.
  • Chen, Y., & Baram, T. Z. (2016). Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 41(1), 197–206. https://doi.org/10.1038/npp.2015.181
  • Abell, J. G., Shipley, M. J., Ferrie, J. E., Kivimäki, M., & Kumari, M. (2016). Recurrent short sleep, chronic insomnia symptoms and salivary cortisol: A 10-year follow-up in the Whitehall II study. Psychoneuroendocrinology, 68, 91–99. https://doi.org/10.1016/j.psyneuen.2016.02.021
  • Clark, A., & Mach, N. (2016). Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. Journal of the International Society of Sports Nutrition, 13(43):1-21. https://doi.org/10.1186/s12970-016-0155-6
  • Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nature reviews. Gastroenterology & hepatology, 16(8), 461–478. https://doi.org/10.1038/s41575-019-0157-3
  • Dinan, T. G., & Cryan, J. F. (2012). Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37(9), 1369–1378. https://doi.org/10.1016/j.psyneuen.2012.03.007
  • Elmquist, J. K., Elias, C. F., & Saper, C. B. (1999). From lesions to leptin: hypothalamic control of food intake and body weight. Neuron, 22(2), 221–232. https://doi.org/10.1016/s0896-6273(00)81084-3
  • Farzi, A., Fröhlich, E. E., & Holzer, P. (2018). Gut Microbiota and the Neuroendocrine System. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 15(1), 5–22. https://doi.org/10.1007/s13311-017-0600-5
  • Fatahi, S., Matin, S. S., Sohouli, M. H., Găman, M. A., Raee, P., Olang, B., Kathirgamathamby, V., Santos, H. O., Guimarães, N. S., & Shidfar, F. (2021). Association of dietary fiber and depression symptom: A systematic review and meta-analysis of observational studies. Complementary therapies in medicine, 56, 102621. https://doi.org/10.1016/j.ctim.2020.102621
  • Food and Drug Administration (FDA). 2015. U.S. food and drug administration nutrition facts. Available at: https://www.fda.gov/food/labelingnutrition
  • Foster, J. A., & McVey Neufeld, K.-A. (2013). Gut–brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305-312. https://doi.org/10.1016/j.tins.2013.01.005
  • Friedman, J. M., & Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395(6704), 763–770. https://doi.org/10.1038/27376
  • Gropper, S. S., Smith, J. L., & Grodd, J. L. (2019). Advanced nutrition and human metabolism. Belmont, CA: Thomson Wadsworth (pp. 260-275). ISBN 978-0-534-55986-1.
  • Holscher H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut microbes, 8(2), 172–184. https://doi.org/10.1080/19490976.2017.1290756
  • Jiang, X., Lu, N., Xue, Y., Liu, S., Lei, H., Tu, W., Lu, Y., & Xia, D. (2019). Crude fiber modulates the fecal microbiome and steroid hormones in pregnant Meishan sows. General and comparative endocrinology, 277, 141–147. https://doi.org/10.1016/j.ygcen.2019.04.006
  • Krishna, G., & Muralidhara (2015). Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats. Neurotoxicology and teratology, 49, 49–58. https://doi.org/10.1016/j.ntt.2015.03.003
  • Lattimer, J. M., & Haub, M. D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266–1289. https://doi.org/10.3390/nu2121266
  • Maras, P. M., Molet, J., Chen, Y., Rice, C., Ji, S. G., Solodkin, A., & Baram, T. Z. (2014). Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress. Molecular psychiatry, 19(7), 811–822. https://doi.org/10.1038/mp.2014.12
  • McEwen, B. S., & Gianaros, P. J. (2011). Stress- and allostasis-induced brain plasticity. Annual review of medicine, 62, 431–445. https://doi.org/10.1146/annurev-med-052209-100430
  • Miki, T., Kochi, T., Eguchi, M., Kuwahara, K., Tsuruoka, H., Kurotani, K., Ito, R., Akter, S., Kashino, I., Pham, N. M., Kabe, I., Kawakami, N., Mizoue, T., & Nanri, A. (2015). Dietary intake of minerals in relation to depressive symptoms in Japanese employees: the Furukawa Nutrition and Health Study. Nutrition (Burbank, Los Angeles County, Calif.), 31(5), 686–690. https://doi.org/10.1016/j.nut.2014.11.002
  • Mohajeri, M. H., Brummer, R., Rastall, R. A., Weersma, R. K., Harmsen, H., Faas, M., & Eggersdorfer, M. (2018). The role of the microbiome for human health: from basic science to clinical applications. European journal of nutrition, 57(Suppl 1), 1–14. https://doi.org/10.1007/s00394-018-1703-4
  • Müller, T. D., Nogueiras, R., Andermann, M. L., Andrews, Z. B., Anker, S. D., Argente, J., Batterham, R. L., Benoit, S. C., Bowers, C. Y., Broglio, F., Casanueva, F. F., D'Alessio, D., Depoortere, I., Geliebter, A., Ghigo, E., Cole, P. A., Cowley, M., Cummings, D. E., Dagher, A., Diano, S., … Tschöp, M. H. (2015). Ghrelin. Molecular metabolism, 4(6), 437–460. https://doi.org/10.1016/j.molmet.2015.03.005
  • Nyman, M., Asp, N. G., Cummings, J., & Wiggins, H. (1986). Fermentation of dietary fibre in the intestinal tract: comparison between man and rat. The British journal of nutrition, 55(3), 487–496. https://doi.org/10.1079/bjn19860056
  • Orta, O. R., Gelaye, B., Bain, P. A., & Williams, M. A. (2018). The association between maternal cortisol and depression during pregnancy, a systematic review. Archives of women's mental health, 21(1), 43–53. https://doi.org/10.1007/s00737-017-0777-y
  • Osborne, S., Biaggi, A., Chua, T. E., Du Preez, A., Hazelgrove, K., Nikkheslat, N., Previti, G., Zunszain, P. A., Conroy, S., & Pariante, C. M. (2018). Antenatal depression programs cortisol stress reactivity in offspring through increased maternal inflammation and cortisol in pregnancy: The Psychiatry Research and Motherhood - Depression (PRAM-D) Study. Psychoneuroendocrinology, 98, 211–221. https://doi.org/10.1016/j.psyneuen.2018.06.017
  • Prinelli, F., Fratiglioni, L., Kalpouzos, G., Musicco, M., Adorni, F., Johansson, I., Marseglia, A., & Xu, W. (2019). Specific nutrient patterns are associated with higher structural brain integrity in dementia-free older adults. NeuroImage, 199, 281–288. https://doi.org/10.1016/j.neuroimage.2019.05.066
  • Rackers, H. S., Thomas, S., Williamson, K., Posey, R., & Kimmel, M. C. (2018). Emerging literature in the Microbiota-Brain Axis and Perinatal Mood and Anxiety Disorders. Psychoneuroendocrinology, 95, 86–96. https://doi.org/10.1016/j.psyneuen.2018.05.020
  • Rea, K., Dinan, T. G., & Cryan, J. F. (2016). The microbiome: A key regulator of stress and neuroinflammation. Neurobiology of stress, 4, 23–33. https://doi.org/10.1016/j.ynstr.2016.03.001
  • Sampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. Cell host & microbe, 17(5), 565–576. https://doi.org/10.1016/j.chom.2015.04.011
  • Savignac, H. M., Tramullas, M., Kiely, B., Dinan, T. G., & Cryan, J. F. (2015). Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behavioural brain research, 287, 59–72. https://doi.org/10.1016/j.bbr.2015.02.044
  • Schmidt, K., Cowen, P. J., Harmer, C. J., Tzortzis, G., Errington, S., & Burnet, P. W. (2015). Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology, 232(10), 1793–1801. https://doi.org/10.1007/s00213-014-3810-0
  • Seth, S., Lewis, A. J., & Galbally, M. (2016). Perinatal maternal depression and cortisol function in pregnancy and the postpartum period: a systematic literature review. BMC pregnancy and childbirth, 16(1), 124. https://doi.org/10.1186/s12884-016-0915-y
  • Sharma, S. K., Bansal, S., Mangal, M., Dixit, A. K., Gupta, R. K., & Mangal, A. K. (2016). Utilization of Food Processing By-products as Dietary, Functional, and Novel Fiber: A Review. Critical reviews in food science and nutrition, 56(10), 1647–1661. https://doi.org/10.1080/10408398.2013.794327
  • Sidhu, G. S., Sidhu, T. K., Kaur, P., Lal, D., & Sangha, N. K. (2019). Evaluation of Peripartum Depression in Females. International journal of applied & basic medical research, 9(4), 201–205. https://doi.org/10.4103/ijabmr.IJABMR_23_19
  • Sugiyama, F., Yamaguchi, T., Hu, A., Kobayashi, A., & Kobayashi, H. (2017). Effects of fiber supplementation for four weeks on athletic performance in Japanese college athletes: A case study—measurement of the athletic performance, salivary biomarkers of stress, and mood, affect balance. Health, 9(03), 556. https://doi.org/10.4236/health.2017.93039
  • Szpunar, M. J., & Parry, B. L. (2018). A systematic review of cortisol, thyroid-stimulating hormone, and prolactin in peripartum women with major depression. Archives of women's mental health, 21(2), 149–161. https://doi.org/10.1007/s00737-017-0787-9
  • Torres-Velázquez, M., Sawin, E. A., Anderson, J. M., & Yu, J. J. (2019). Refractory diet-dependent changes in neural microstructure: Implications for microstructural endophenotypes of neurologic and psychiatric disease. Magnetic resonance imaging, 58, 148–155. https://doi.org/10.1016/j.mri.2019.02.006
  • Zielinski, G., DeVries, J. W., Craig, S. A., & Bridges, A. R. (2013). Dietary fiber methods in Codex Alimentarius: Current status and ongoing discussions. Cereal Food World, 58, 148-153.

LİF TÜKETİMİNİN GEBELİKTE KORTİZOL SEVİYELERİ VE HPA AKSINA ETKİSİ

Year 2024, Volume: 7 Issue: 1, 187 - 194, 05.04.2024
https://doi.org/10.5281/zenodo.10929553

Abstract

Zararlı bir uyaranın algılanması sırasında savaş ya da kaç tepkisine bir adaptasyon olarak gelişen stres, bazı koşullar altında (sinir, endokrin ve bağışıklık sistemleri dahil) zararlı olabilecek bir dizi fizyolojik tepkiyi uyarır. Bu tepkiler arasında hipotalamus- hipofiz- adrenal aksının hiperaktivitesi, depresif hastalarda en yaygın görülen nörobiyolojik değişikliklerden biridir. Özellikle gebelikte depresyon, ruh sağlığını tehlikeye atan sinsi bir halk sağlığı sorunudur. Ciddiye alınmadığı durumlarda intihara kadar giden vakalar ile karşılaşılabilmektedir. Doğum öncesi depresyonun olumsuz sonuçları yalnız annede değil, ileri dönemde çocuk üzerinde de görülmektedir. Gebeliğe bağlı depresyon, genellikle birden çok sebebe bağlı olup birçok farklı fizyolojik etkenle ilişkilidir. Hamilelik sırasında ortaya çıkan fizyolojik kaymalar, maternal stres koruma mekanizmasında hipotalamus- hipofiz- adrenal aksı düzensizliği ve kortizolün aşırı salgılanması gibi değişikliklerin oluşmasına sebep olur. Vücudun strese gösterdiği tepkiyle ilişkili olan aşırı kortizol salınımı, gebelik süresince görülen depresif belirtilerle ilişkilidir. Yakın zamanda yapılan çalışmalar belirli diyet etkenlerinin özellikle diyet liflerinin, stres hormonunu zayıflattığını vurgulamaktadır. Vücuda alınan diyet lifi, bağırsak bakterileri vasıtasıyla sindirilir ve kısa zincirli yağ asitlerinin ortaya çıkarılmasını sağlar. Söz konusu metabolitlerin hipotalamus- hipofiz- adrenal aksı başta olmak üzere pek çok değişik nörolojik fonksiyonu etkilediği düşünülmektedir. Bu derleme makale, kortizol salınımnda rol oynadığı düşünülen lif tüketiminin yaptığı değişiklikleri belirlemeyi hedeflemektedir

References

  • Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., & Flier, J. S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382(6588), 250–252. https://doi.org/10.1038/382250a0
  • Basu, T., Maguire, J., & Salpekar, J. A. (2021). Hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Neuroscience letters. 135618. https://doi.org/10.1016/j.neulet.2020.135618
  • Bates, S. H., & Myers, M. G., Jr (2003). The role of leptin receptor signaling in feeding and neuroendocrine function. Trends in endocrinology and metabolism: TEM, 14(10), 447–452. https://doi.org/10.1016/j.tem.2003.10.003
  • Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017). Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biological psychiatry, 82(7), 472–487. https://doi.org/10.1016/j.biopsych.2016.12.031
  • Căpriţă, A., Căpriţă, R., Simulescu, V. O. G., & Drehe, R. M. (2010). Dietary fiber: Chemical and functional properties. Journal of Agroalimentary Processes and Technologies, 16(4), 406-416.
  • Chen, Y., & Baram, T. Z. (2016). Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 41(1), 197–206. https://doi.org/10.1038/npp.2015.181
  • Abell, J. G., Shipley, M. J., Ferrie, J. E., Kivimäki, M., & Kumari, M. (2016). Recurrent short sleep, chronic insomnia symptoms and salivary cortisol: A 10-year follow-up in the Whitehall II study. Psychoneuroendocrinology, 68, 91–99. https://doi.org/10.1016/j.psyneuen.2016.02.021
  • Clark, A., & Mach, N. (2016). Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. Journal of the International Society of Sports Nutrition, 13(43):1-21. https://doi.org/10.1186/s12970-016-0155-6
  • Dalile, B., Van Oudenhove, L., Vervliet, B., & Verbeke, K. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nature reviews. Gastroenterology & hepatology, 16(8), 461–478. https://doi.org/10.1038/s41575-019-0157-3
  • Dinan, T. G., & Cryan, J. F. (2012). Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 37(9), 1369–1378. https://doi.org/10.1016/j.psyneuen.2012.03.007
  • Elmquist, J. K., Elias, C. F., & Saper, C. B. (1999). From lesions to leptin: hypothalamic control of food intake and body weight. Neuron, 22(2), 221–232. https://doi.org/10.1016/s0896-6273(00)81084-3
  • Farzi, A., Fröhlich, E. E., & Holzer, P. (2018). Gut Microbiota and the Neuroendocrine System. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 15(1), 5–22. https://doi.org/10.1007/s13311-017-0600-5
  • Fatahi, S., Matin, S. S., Sohouli, M. H., Găman, M. A., Raee, P., Olang, B., Kathirgamathamby, V., Santos, H. O., Guimarães, N. S., & Shidfar, F. (2021). Association of dietary fiber and depression symptom: A systematic review and meta-analysis of observational studies. Complementary therapies in medicine, 56, 102621. https://doi.org/10.1016/j.ctim.2020.102621
  • Food and Drug Administration (FDA). 2015. U.S. food and drug administration nutrition facts. Available at: https://www.fda.gov/food/labelingnutrition
  • Foster, J. A., & McVey Neufeld, K.-A. (2013). Gut–brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305-312. https://doi.org/10.1016/j.tins.2013.01.005
  • Friedman, J. M., & Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395(6704), 763–770. https://doi.org/10.1038/27376
  • Gropper, S. S., Smith, J. L., & Grodd, J. L. (2019). Advanced nutrition and human metabolism. Belmont, CA: Thomson Wadsworth (pp. 260-275). ISBN 978-0-534-55986-1.
  • Holscher H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut microbes, 8(2), 172–184. https://doi.org/10.1080/19490976.2017.1290756
  • Jiang, X., Lu, N., Xue, Y., Liu, S., Lei, H., Tu, W., Lu, Y., & Xia, D. (2019). Crude fiber modulates the fecal microbiome and steroid hormones in pregnant Meishan sows. General and comparative endocrinology, 277, 141–147. https://doi.org/10.1016/j.ygcen.2019.04.006
  • Krishna, G., & Muralidhara (2015). Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats. Neurotoxicology and teratology, 49, 49–58. https://doi.org/10.1016/j.ntt.2015.03.003
  • Lattimer, J. M., & Haub, M. D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266–1289. https://doi.org/10.3390/nu2121266
  • Maras, P. M., Molet, J., Chen, Y., Rice, C., Ji, S. G., Solodkin, A., & Baram, T. Z. (2014). Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress. Molecular psychiatry, 19(7), 811–822. https://doi.org/10.1038/mp.2014.12
  • McEwen, B. S., & Gianaros, P. J. (2011). Stress- and allostasis-induced brain plasticity. Annual review of medicine, 62, 431–445. https://doi.org/10.1146/annurev-med-052209-100430
  • Miki, T., Kochi, T., Eguchi, M., Kuwahara, K., Tsuruoka, H., Kurotani, K., Ito, R., Akter, S., Kashino, I., Pham, N. M., Kabe, I., Kawakami, N., Mizoue, T., & Nanri, A. (2015). Dietary intake of minerals in relation to depressive symptoms in Japanese employees: the Furukawa Nutrition and Health Study. Nutrition (Burbank, Los Angeles County, Calif.), 31(5), 686–690. https://doi.org/10.1016/j.nut.2014.11.002
  • Mohajeri, M. H., Brummer, R., Rastall, R. A., Weersma, R. K., Harmsen, H., Faas, M., & Eggersdorfer, M. (2018). The role of the microbiome for human health: from basic science to clinical applications. European journal of nutrition, 57(Suppl 1), 1–14. https://doi.org/10.1007/s00394-018-1703-4
  • Müller, T. D., Nogueiras, R., Andermann, M. L., Andrews, Z. B., Anker, S. D., Argente, J., Batterham, R. L., Benoit, S. C., Bowers, C. Y., Broglio, F., Casanueva, F. F., D'Alessio, D., Depoortere, I., Geliebter, A., Ghigo, E., Cole, P. A., Cowley, M., Cummings, D. E., Dagher, A., Diano, S., … Tschöp, M. H. (2015). Ghrelin. Molecular metabolism, 4(6), 437–460. https://doi.org/10.1016/j.molmet.2015.03.005
  • Nyman, M., Asp, N. G., Cummings, J., & Wiggins, H. (1986). Fermentation of dietary fibre in the intestinal tract: comparison between man and rat. The British journal of nutrition, 55(3), 487–496. https://doi.org/10.1079/bjn19860056
  • Orta, O. R., Gelaye, B., Bain, P. A., & Williams, M. A. (2018). The association between maternal cortisol and depression during pregnancy, a systematic review. Archives of women's mental health, 21(1), 43–53. https://doi.org/10.1007/s00737-017-0777-y
  • Osborne, S., Biaggi, A., Chua, T. E., Du Preez, A., Hazelgrove, K., Nikkheslat, N., Previti, G., Zunszain, P. A., Conroy, S., & Pariante, C. M. (2018). Antenatal depression programs cortisol stress reactivity in offspring through increased maternal inflammation and cortisol in pregnancy: The Psychiatry Research and Motherhood - Depression (PRAM-D) Study. Psychoneuroendocrinology, 98, 211–221. https://doi.org/10.1016/j.psyneuen.2018.06.017
  • Prinelli, F., Fratiglioni, L., Kalpouzos, G., Musicco, M., Adorni, F., Johansson, I., Marseglia, A., & Xu, W. (2019). Specific nutrient patterns are associated with higher structural brain integrity in dementia-free older adults. NeuroImage, 199, 281–288. https://doi.org/10.1016/j.neuroimage.2019.05.066
  • Rackers, H. S., Thomas, S., Williamson, K., Posey, R., & Kimmel, M. C. (2018). Emerging literature in the Microbiota-Brain Axis and Perinatal Mood and Anxiety Disorders. Psychoneuroendocrinology, 95, 86–96. https://doi.org/10.1016/j.psyneuen.2018.05.020
  • Rea, K., Dinan, T. G., & Cryan, J. F. (2016). The microbiome: A key regulator of stress and neuroinflammation. Neurobiology of stress, 4, 23–33. https://doi.org/10.1016/j.ynstr.2016.03.001
  • Sampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. Cell host & microbe, 17(5), 565–576. https://doi.org/10.1016/j.chom.2015.04.011
  • Savignac, H. M., Tramullas, M., Kiely, B., Dinan, T. G., & Cryan, J. F. (2015). Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behavioural brain research, 287, 59–72. https://doi.org/10.1016/j.bbr.2015.02.044
  • Schmidt, K., Cowen, P. J., Harmer, C. J., Tzortzis, G., Errington, S., & Burnet, P. W. (2015). Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology, 232(10), 1793–1801. https://doi.org/10.1007/s00213-014-3810-0
  • Seth, S., Lewis, A. J., & Galbally, M. (2016). Perinatal maternal depression and cortisol function in pregnancy and the postpartum period: a systematic literature review. BMC pregnancy and childbirth, 16(1), 124. https://doi.org/10.1186/s12884-016-0915-y
  • Sharma, S. K., Bansal, S., Mangal, M., Dixit, A. K., Gupta, R. K., & Mangal, A. K. (2016). Utilization of Food Processing By-products as Dietary, Functional, and Novel Fiber: A Review. Critical reviews in food science and nutrition, 56(10), 1647–1661. https://doi.org/10.1080/10408398.2013.794327
  • Sidhu, G. S., Sidhu, T. K., Kaur, P., Lal, D., & Sangha, N. K. (2019). Evaluation of Peripartum Depression in Females. International journal of applied & basic medical research, 9(4), 201–205. https://doi.org/10.4103/ijabmr.IJABMR_23_19
  • Sugiyama, F., Yamaguchi, T., Hu, A., Kobayashi, A., & Kobayashi, H. (2017). Effects of fiber supplementation for four weeks on athletic performance in Japanese college athletes: A case study—measurement of the athletic performance, salivary biomarkers of stress, and mood, affect balance. Health, 9(03), 556. https://doi.org/10.4236/health.2017.93039
  • Szpunar, M. J., & Parry, B. L. (2018). A systematic review of cortisol, thyroid-stimulating hormone, and prolactin in peripartum women with major depression. Archives of women's mental health, 21(2), 149–161. https://doi.org/10.1007/s00737-017-0787-9
  • Torres-Velázquez, M., Sawin, E. A., Anderson, J. M., & Yu, J. J. (2019). Refractory diet-dependent changes in neural microstructure: Implications for microstructural endophenotypes of neurologic and psychiatric disease. Magnetic resonance imaging, 58, 148–155. https://doi.org/10.1016/j.mri.2019.02.006
  • Zielinski, G., DeVries, J. W., Craig, S. A., & Bridges, A. R. (2013). Dietary fiber methods in Codex Alimentarius: Current status and ongoing discussions. Cereal Food World, 58, 148-153.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Health Services and Systems (Other)
Journal Section Review
Authors

Dursun Alper Yılmaz

İbrahim Hakkı Çağıran

Metin Yıldız This is me

Mehmet Salih Yıldırım

Gökhan Dege This is me

Early Pub Date March 29, 2024
Publication Date April 5, 2024
Submission Date March 9, 2022
Acceptance Date January 17, 2024
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

APA Yılmaz, D. A., Çağıran, İ. H., Yıldız, M., Yıldırım, M. S., et al. (2024). LİF TÜKETİMİNİN GEBELİKTE KORTİZOL SEVİYELERİ VE HPA AKSINA ETKİSİ. Ebelik Ve Sağlık Bilimleri Dergisi, 7(1), 187-194. https://doi.org/10.5281/zenodo.10929553
AMA Yılmaz DA, Çağıran İH, Yıldız M, Yıldırım MS, Dege G. LİF TÜKETİMİNİN GEBELİKTE KORTİZOL SEVİYELERİ VE HPA AKSINA ETKİSİ. Journal of Midwifery and Health Sciences. April 2024;7(1):187-194. doi:10.5281/zenodo.10929553
Chicago Yılmaz, Dursun Alper, İbrahim Hakkı Çağıran, Metin Yıldız, Mehmet Salih Yıldırım, and Gökhan Dege. “LİF TÜKETİMİNİN GEBELİKTE KORTİZOL SEVİYELERİ VE HPA AKSINA ETKİSİ”. Ebelik Ve Sağlık Bilimleri Dergisi 7, no. 1 (April 2024): 187-94. https://doi.org/10.5281/zenodo.10929553.
EndNote Yılmaz DA, Çağıran İH, Yıldız M, Yıldırım MS, Dege G (April 1, 2024) LİF TÜKETİMİNİN GEBELİKTE KORTİZOL SEVİYELERİ VE HPA AKSINA ETKİSİ. Ebelik ve Sağlık Bilimleri Dergisi 7 1 187–194.
IEEE D. A. Yılmaz, İ. H. Çağıran, M. Yıldız, M. S. Yıldırım, and G. Dege, “LİF TÜKETİMİNİN GEBELİKTE KORTİZOL SEVİYELERİ VE HPA AKSINA ETKİSİ”, Journal of Midwifery and Health Sciences, vol. 7, no. 1, pp. 187–194, 2024, doi: 10.5281/zenodo.10929553.
ISNAD Yılmaz, Dursun Alper et al. “LİF TÜKETİMİNİN GEBELİKTE KORTİZOL SEVİYELERİ VE HPA AKSINA ETKİSİ”. Ebelik ve Sağlık Bilimleri Dergisi 7/1 (April 2024), 187-194. https://doi.org/10.5281/zenodo.10929553.
JAMA Yılmaz DA, Çağıran İH, Yıldız M, Yıldırım MS, Dege G. LİF TÜKETİMİNİN GEBELİKTE KORTİZOL SEVİYELERİ VE HPA AKSINA ETKİSİ. Journal of Midwifery and Health Sciences. 2024;7:187–194.
MLA Yılmaz, Dursun Alper et al. “LİF TÜKETİMİNİN GEBELİKTE KORTİZOL SEVİYELERİ VE HPA AKSINA ETKİSİ”. Ebelik Ve Sağlık Bilimleri Dergisi, vol. 7, no. 1, 2024, pp. 187-94, doi:10.5281/zenodo.10929553.
Vancouver Yılmaz DA, Çağıran İH, Yıldız M, Yıldırım MS, Dege G. LİF TÜKETİMİNİN GEBELİKTE KORTİZOL SEVİYELERİ VE HPA AKSINA ETKİSİ. Journal of Midwifery and Health Sciences. 2024;7(1):187-94.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

2992931409