Research Article
BibTex RIS Cite

Nesnel Çok Kriterli Karar Verme Teknikleriyle G-20 Ülkelerinin İnsani Gelişmişlik Düzeylerine Göre Sıralanması: Entegre MEREC–EDAS Yaklaşımı

Year 2025, Volume: 24 Issue: 4, 1579 - 1603
https://doi.org/10.17755/esosder.1597932

Abstract

İnsani Gelişme Endeksi (İGE), insan gelişiminin temel boyutları olan sağlık, eğitim ve yaşam standardını kapsayan bileşik bir göstergedir. Bu çalışma, G-20 ülkelerini 2023 yılı verilerine göre İGE göstergeleri açısından nesnel biçimde sıralamayı amaçlamaktadır. Bu amaçla, Birleşmiş Milletler Kalkınma Programı (UNDP) tarafından yayımlanan 2023 İnsani Gelişme Raporu’ndan elde edilen veriler kullanılmış ve bütünleşik bir çok kriterli karar verme (ÇKKV) yaklaşımı uygulanmıştır. Kriterlerin ağırlıkları, marjinal etkileri esas alan MEREC yöntemiyle belirlenmiş; kişi başına düşen gayrisafi milli gelir en önemli kriter olarak tespit edilmiştir. Bu ağırlıklar kullanılarak, ülkelerin sıralaması EDAS yöntemiyle gerçekleştirilmiştir. Bulgulara göre, Amerika Birleşik Devletleri, Almanya ve Avustralya en yüksek insani gelişme düzeyine sahipken; Güney Afrika, Endonezya ve Hindistan son sıralarda yer almıştır. Bu sonuçlar, ekonomik refah, eğitim düzeyi ve sağlık göstergelerinin insani gelişmedeki belirleyici etkisini vurgulamaktadır. Ayrıca, EDAS yöntemiyle elde edilen sıralamalar ile UNDP’nin resmi İGE sıralamaları arasındaki yüksek tutarlılık, önerilen yaklaşımın geçerliliğini ve güvenilirliğini desteklemektedir.

References

  • Akyüz, B.E & İpekçi Çetin, E. (2022) İnsani gelişme endeksi ve vikor yöntemine göre Türkiye'deki illerin sıralaması. Verimlilik Dergisi, 1(1), 60-77. https://doi.org/10.51551/verimlilik.824462.
  • Altıntaş, F.F. (2020). Doğu avrupa bölgesindeki avrupa birliği’ne üye ülkelerin insani gelişmişlik endekslerinin entropi tabanlı aras ve edas yöntemleri ile değerlendirilmesi. International Social Mentality and Researcher Thinkers Journal, 6(30): 508-522. http://dx.doi.org/10.31576/smryj.491
  • Ayçin, E. & Arsu, T. (2022). Sosyal Gelişme Endeksine Göre Ülkelerin Değerlendirilmesi: MEREC ve MARCOS Yöntemleri ile Bir Uygulama. İzmir Yönetim Dergisi, 2(2), 75-88. https://doi.org/10.56203/iyd.1084310.
  • Bektaş, S. (2022).Türk sigorta sektörünün 2002-2021 dönemi için MEREC, LOPCOW, COCOSO, EDAS ÇKKV yöntemleri ile performansının değerlendirilmesi, BDDK Bankacılık ve Finansal Piyasalar Dergisi, 16, (2), 247-283. https://doi.org/10.46520/bddkdergisi.1178359.
  • Carvalhal Monteiro, R.L., Pereira, V. & Costa, H.G.(2018). A multicriteria approach to the human development index classification. Social Indicator Reearch ,136, 417–438. https://doi.org/10.1007/s11205-017-1556-x.
  • Chang J. R., Chen D. H. & Hung C. T. (2005). Selecting preventive maintenance treatments in texas using thetechnique for order preference by similarity to the ideal solution for specific pavement study3 sites, Journal of the Transportation Research Board, 1933, 62-71. http://dx.doi.org/10.3141/1933-08.
  • Chen, X. & Li, Y. (2025). A new approach based on single valued neutrosophic sets for evaluating teaching quality challenges in college public English: Broad impacts of MEREC and EDAS methods. Neutrosophic Sets and Systems, 65, 23–40.
  • Cheng, S., Chan, C., W. & Huang, G., H. (2003). An integrated multi-criteria decision analysis and inexact mixed integer linear programming approach for solid waste management. Engineering Applications of Artificial Intelligence, 16 (5-6), 543-554. https://doi.org/10.1016/S0952-1976(03)00069-1
  • Çınaroğlu, E. (2022). Entropi destekli EDAS ve CODAS yöntemleri ile bireysel emeklilik şirketlerinin performans değerlendirmesi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 10(1), 325-345. http://dx.doi.org/10.18506/anemon.961937
  • Duran, Z. (2023). Evaluation of supply chain resilience in n-11 countries by MEREC based EDAS, MARCOS, WASPAS integrated method.Yildiz Social Science Review,9(1), 1–15. https://doi.org/10.51803/yssr.1246243
  • Ecer, F. & Aycin, E. (2023). Novel comprehensive MEREC weighting-based score aggregation model for measuring innovation performance: The case of G7 countries. Informatica, 34(1), 53-83. https://doi.org/10.15388/22-INFOR494
  • Elsayed, A. (2024). Yeşil yakıt alternatiflerini değerlendirmek için çok kriterli karar verme çerçevesi: hibrit bir MEREC-TODIM yaklaşımı. Nötrosofik Optimizasyon Ve Akıllı Sistemler, 3, 41-56. https://doi.org/10.61356/j.nois.2024.3323
  • Ghorabaee, M. K., Zavadskas, E. K., Olfat, L. & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435–451. http://dx.doi.org/10.15388/Informatica.2015.57
  • Goswami, S. S., Mohanty, S. K. & Behera, D. K. (2022). Selection of a green renewable energy source in india with the help of merec integrated piv mcdm tool. Materialstoday: proceedings, 52, 1153-1160. https://doi.org/10.1016/j.matpr.2021.11.019.
  • Goswami, S.S., Tapankumar, T., Naik, N. C. K., Gowrishankar, J., Bhosle, N., Singh, A., Raju, G. S., Nagesh, D. & Santhosh, A.J.(2025). Multi‑model MCDM framework for sustainable renewable energy selection in India: integrating CRITIC‑EDAS‑CODAS‑CoCoSo. Discover Sustainability, 6(500), 1-34. https://doi.org/10.1007/s43621-025-01069-0
  • Kara, K., Yalçın, G. C., Acar, A. Z., Simic, V., Konya, S. & Pamučar, D. (2024). The MEREC-AROMAN method for determining sustainable competitiveness levels: A case study for Turkey. Socio-Economic Planning Sciences, 91, 101762. https://doi.org/10.1016/j.seps.2023.101762.
  • Kara, M.A.(2025). NATO üyesi ülkelerin ekonomik özgürlük endekslerinin MEREC, GİA ve EDAS yöntemleri ile analizi. Turkish Studies - Economics, Finance, Politics,20(1),259. https://doi.org/10.7827/TurkishStudies.78803.
  • Karabulut, T., Kaya, N. & Gürsoy, Z. (2009). Ekonomik kalkınma ve işbirliği örgütüne üye ülkelerin 2006 yılı insani gelişmişlik düzeylerinin analizi. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 2 (2), 1-18.
  • Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z. & Antucheviciene, J. (2021), Determination of objective weights using a new method based on the removal effects of criteria MEREC, Symmetry, 13(4), 525. https://doi.org/10.3390/sym13040525.
  • Kılıç Depren, S. & Bağdatlı Kalkan, S. (2018). Determination of countries’ position using better life index: The entropy based multimoora approach. Trakya Üniversitesi Sosyal Bilimler Dergisi, 20(2), 353-366. https://doi.org/10.26468/trakyasobed.466902.
  • Krylovas, A., Dadeliene, R. , Kosareva,N. & Dadelo,S.(2019). Comparative evaluation and ranking of the european countries based on the interdependence between human development and internal security indicators. Mathematics,7(3),293-410. https://doi.org/10.3390/math7030293.
  • Kumar, S. & Singh, R. (2024). An integrated MEREC–taxonomy methodology for multi-criteria decision analysis. Trends in Analytical and Scientific Methodologies, 18(4), 215–229. https://doi.org/10.1016/j.aei.2024.102891.
  • Lee, H.S., Lin, K.and Fang, H.H. (2006). A fuzzy multiple objective dea for the human development index.In: Gabrys, b., howlett, r.j., jain, l.c. (eds) Knowledge-based intelligent information and engineering systems. Lecture Notes in Computer Science, vol 4252. Springer, Berlin, Heidelberg.
  • Li, T.; Sun, M. A (2024). Cloud model-based CRITIC-EDAS decision-making approach with linguistic information for marine ranching site selection. Water, 16(5), 688.https://doi.org/10.3390/ w16050688
  • Lukić, R. (2023). Analysis of the performance of the Serbian economy based on the MEREC- WASPAS method. MARSONIA: Časopis za društvena i humanistička istraživanja, 2(1), 39-52.
  • Ma,X. (2025). New Approach Single Valued Neutrosophic Sets for Teaching Quality Challenges Evaluation in College Public English Broad Impacts, Neutrosophic Sets and Systems, 81(1), 61-78.
  • Mastilo, Z., Štilić, A., Gligović, D. & Puška, A. (2024). Assessing the banking sector of Bosnia and Herzegovina: An analysis of financial indicators through the MEREC and MARCOS methods. Journal of Central Banking Theory and Practice, 13(1), 167-197. https://doi.org/10.2478/jcbtp-2024-0008
  • Mijalkovski,S., Stefanov,V. & Mirakovski,D.(2024). Selection of the location of the main warehouse using the EDAS method, Natural Resources and Technology, 18(1), 32 – 38. https://doi.org/10.46763/NRT24181032m
  • Nartgün, Ş.S., Akın, M., Kösterelioğlu , M.A. & Sipahioğlu, M.(2013). İnsani gelişim indeksi göstergeleri açısından AB üyesi ve AB üyeliğine aday ülkelerin karşılaştırılması. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 3(1),80-89.
  • Okursoy, A. & Tezsürücü Coşansu, D. (2024). Zero emission electric vehicle selection using the MEREC-based CoCoSo method, Alphanumeric, 12 (1), 39-58. https://doi. org/10.17093/alphanumeric.1451556
  • Omrani, H., Alizadeh, A. & Amini, M. (2020). A new approach based on bwm and multimoora methods for calculating semi-human development index: An application for provinces of iran. Socio-economic Planning Sciences, 70, 100689. http://dx.doi.org/10.1016/j.seps.2019.02.004.
  • Orakçı, E. & Özdemir, A.(2017). Telafi edici çok kriterli karar verme yöntemleri ile Türkiye ve AB ülkelerinin insani gelişmişlik düzeylerinin belirlenmesi. Journal of Economics and Administrative Sciences, 19(1),61-74. http://dx.doi.org/10.5578/jeas.49652.
  • Özekenci, E.K. (2025). Evaluation of the logistics performance index of OECD countries based on hybrid MCDM methods, Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi, 47(1), 47-76. http://dx.doi.org/ 10.14780/ muiibd.1469898.
  • Özçekiç, E. (2025). Electric vehicle charging station positioning problem: multi-criteria decision making analysis with Entropy, CoCoSo and EDAS methods. Biga İktisadi ve İdari Bilimler Fakültesi Dergisi, 5(3), 187-202. https://doi.org/10.70754/biibfd.1594279
  • Paksoy, S. (2015). Ülke göstergelerinin vikor yöntemi ile değerlendirilmesi, Ekonomik ve Sosyal Araştırmalar Dergisi, 11(2), 153-169.
  • Ramachandran, S. M., Saravanan,V. & Nanjundan,P.(2023). Application of the EDAS Technique for Selecting the Electric Motor Vehicles, REST Journal on Advances in Mechanical Engineering Vol: 2(4), 27-36.
  • Safari, H.; Khanmohammadi, E.; Hafezamini, A. & Ahangari, S. S. (2013). A new technique for multi-criteria decision making based on modified similarity method. Middle-east Journal of Science and Research, 14(5), 712-719. http://dx.doi.org/10.5829/idosi.mejsr.2013.14.5.335.
  • Safari, H. & Ebrahimi, E. (2014). Using modified similarity multiple criteria decision making technique to rank countries in terms of human development index. Journal of Industrial Engineering and Management, 7(1), 254-275. https://doi.org/10.3926/jiem.837.
  • Salam, A. (2024). Selection of Appropriate UAV-Integrated with Mobile Edge Computing for Ensuring Safety and Security of Smart Cities. International Journal of Computers and Informatics, 5, 44–66. https://orcid.org/0009-0007-9358-9713.
  • Süzülmüş, S. & Yakut, E.(2024). CRITIC temelli PROMETHEE ve EDAS teknikleriyle bankaların finansal performanslarının belirlenerek karşılaştırılması. Manas Sosyal Araştırmalar Dergisi, 13(1), 218-239. doi:10.33206/mjss.1267073
  • Ulutaş, A., Balo, F. & Topal, A. (2023). Identifying the most efficient natural fibre for common commercial building insulation materials with an integrated PSI, MEREC, LOPCOW and MCRAT model. Polymers, 15(6), 1500. https://doi.org/10.3390/polym15061500
  • United Nations Development Programme (2023). Human development indices and indicators. Retrieved April 30, 2024, from http://hdr.undp.org/en/reports/global/hdr2023
  • Wang, Q., Cheng, T., Lu, Y., Liu, H., Zhang, R. & Huang, J.(2024) Underground mine safety and health: a hybrid merec–cocoso system for the selection of best sensor. Sensors, 24, 1285. https://doi.org/ 10.3390/s24041285

Ranking G-20 Countries by Human Development Index Using Objective MCDM Techniques: An Integrated MEREC–EDAS Approach

Year 2025, Volume: 24 Issue: 4, 1579 - 1603
https://doi.org/10.17755/esosder.1597932

Abstract

The Human Development Index (HDI) is a composite indicator that encompasses the fundamental dimensions of human development, namely health, education, and standard of living. This study aims to objectively rank G-20 countries according to their HDI indicators using 2023 data published by the United Nations Development Programme (UNDP). An integrated Multi-Criteria Decision-Making (MCDM) framework combining the MEREC and EDAS methods was applied. Criterion weights were determined using the MEREC method, which assesses the marginal effect of each indicator, identifying gross national income per capita as the most influential criterion. Based on these weights, countries were ranked through the EDAS method. Results indicate that the United States, Germany, and Australia occupy the highest positions, while South Africa, Indonesia, and India rank lowest. These findings highlight the decisive role of economic prosperity, education, and health standards in shaping human development outcomes. Furthermore, the high consistency between EDAS-based rankings and the official HDI order confirms the validity and robustness of the proposed integrated approach, demonstrating its potential for objective, data-driven evaluation of multidimensional development performance.

References

  • Akyüz, B.E & İpekçi Çetin, E. (2022) İnsani gelişme endeksi ve vikor yöntemine göre Türkiye'deki illerin sıralaması. Verimlilik Dergisi, 1(1), 60-77. https://doi.org/10.51551/verimlilik.824462.
  • Altıntaş, F.F. (2020). Doğu avrupa bölgesindeki avrupa birliği’ne üye ülkelerin insani gelişmişlik endekslerinin entropi tabanlı aras ve edas yöntemleri ile değerlendirilmesi. International Social Mentality and Researcher Thinkers Journal, 6(30): 508-522. http://dx.doi.org/10.31576/smryj.491
  • Ayçin, E. & Arsu, T. (2022). Sosyal Gelişme Endeksine Göre Ülkelerin Değerlendirilmesi: MEREC ve MARCOS Yöntemleri ile Bir Uygulama. İzmir Yönetim Dergisi, 2(2), 75-88. https://doi.org/10.56203/iyd.1084310.
  • Bektaş, S. (2022).Türk sigorta sektörünün 2002-2021 dönemi için MEREC, LOPCOW, COCOSO, EDAS ÇKKV yöntemleri ile performansının değerlendirilmesi, BDDK Bankacılık ve Finansal Piyasalar Dergisi, 16, (2), 247-283. https://doi.org/10.46520/bddkdergisi.1178359.
  • Carvalhal Monteiro, R.L., Pereira, V. & Costa, H.G.(2018). A multicriteria approach to the human development index classification. Social Indicator Reearch ,136, 417–438. https://doi.org/10.1007/s11205-017-1556-x.
  • Chang J. R., Chen D. H. & Hung C. T. (2005). Selecting preventive maintenance treatments in texas using thetechnique for order preference by similarity to the ideal solution for specific pavement study3 sites, Journal of the Transportation Research Board, 1933, 62-71. http://dx.doi.org/10.3141/1933-08.
  • Chen, X. & Li, Y. (2025). A new approach based on single valued neutrosophic sets for evaluating teaching quality challenges in college public English: Broad impacts of MEREC and EDAS methods. Neutrosophic Sets and Systems, 65, 23–40.
  • Cheng, S., Chan, C., W. & Huang, G., H. (2003). An integrated multi-criteria decision analysis and inexact mixed integer linear programming approach for solid waste management. Engineering Applications of Artificial Intelligence, 16 (5-6), 543-554. https://doi.org/10.1016/S0952-1976(03)00069-1
  • Çınaroğlu, E. (2022). Entropi destekli EDAS ve CODAS yöntemleri ile bireysel emeklilik şirketlerinin performans değerlendirmesi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 10(1), 325-345. http://dx.doi.org/10.18506/anemon.961937
  • Duran, Z. (2023). Evaluation of supply chain resilience in n-11 countries by MEREC based EDAS, MARCOS, WASPAS integrated method.Yildiz Social Science Review,9(1), 1–15. https://doi.org/10.51803/yssr.1246243
  • Ecer, F. & Aycin, E. (2023). Novel comprehensive MEREC weighting-based score aggregation model for measuring innovation performance: The case of G7 countries. Informatica, 34(1), 53-83. https://doi.org/10.15388/22-INFOR494
  • Elsayed, A. (2024). Yeşil yakıt alternatiflerini değerlendirmek için çok kriterli karar verme çerçevesi: hibrit bir MEREC-TODIM yaklaşımı. Nötrosofik Optimizasyon Ve Akıllı Sistemler, 3, 41-56. https://doi.org/10.61356/j.nois.2024.3323
  • Ghorabaee, M. K., Zavadskas, E. K., Olfat, L. & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435–451. http://dx.doi.org/10.15388/Informatica.2015.57
  • Goswami, S. S., Mohanty, S. K. & Behera, D. K. (2022). Selection of a green renewable energy source in india with the help of merec integrated piv mcdm tool. Materialstoday: proceedings, 52, 1153-1160. https://doi.org/10.1016/j.matpr.2021.11.019.
  • Goswami, S.S., Tapankumar, T., Naik, N. C. K., Gowrishankar, J., Bhosle, N., Singh, A., Raju, G. S., Nagesh, D. & Santhosh, A.J.(2025). Multi‑model MCDM framework for sustainable renewable energy selection in India: integrating CRITIC‑EDAS‑CODAS‑CoCoSo. Discover Sustainability, 6(500), 1-34. https://doi.org/10.1007/s43621-025-01069-0
  • Kara, K., Yalçın, G. C., Acar, A. Z., Simic, V., Konya, S. & Pamučar, D. (2024). The MEREC-AROMAN method for determining sustainable competitiveness levels: A case study for Turkey. Socio-Economic Planning Sciences, 91, 101762. https://doi.org/10.1016/j.seps.2023.101762.
  • Kara, M.A.(2025). NATO üyesi ülkelerin ekonomik özgürlük endekslerinin MEREC, GİA ve EDAS yöntemleri ile analizi. Turkish Studies - Economics, Finance, Politics,20(1),259. https://doi.org/10.7827/TurkishStudies.78803.
  • Karabulut, T., Kaya, N. & Gürsoy, Z. (2009). Ekonomik kalkınma ve işbirliği örgütüne üye ülkelerin 2006 yılı insani gelişmişlik düzeylerinin analizi. Niğde Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 2 (2), 1-18.
  • Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z. & Antucheviciene, J. (2021), Determination of objective weights using a new method based on the removal effects of criteria MEREC, Symmetry, 13(4), 525. https://doi.org/10.3390/sym13040525.
  • Kılıç Depren, S. & Bağdatlı Kalkan, S. (2018). Determination of countries’ position using better life index: The entropy based multimoora approach. Trakya Üniversitesi Sosyal Bilimler Dergisi, 20(2), 353-366. https://doi.org/10.26468/trakyasobed.466902.
  • Krylovas, A., Dadeliene, R. , Kosareva,N. & Dadelo,S.(2019). Comparative evaluation and ranking of the european countries based on the interdependence between human development and internal security indicators. Mathematics,7(3),293-410. https://doi.org/10.3390/math7030293.
  • Kumar, S. & Singh, R. (2024). An integrated MEREC–taxonomy methodology for multi-criteria decision analysis. Trends in Analytical and Scientific Methodologies, 18(4), 215–229. https://doi.org/10.1016/j.aei.2024.102891.
  • Lee, H.S., Lin, K.and Fang, H.H. (2006). A fuzzy multiple objective dea for the human development index.In: Gabrys, b., howlett, r.j., jain, l.c. (eds) Knowledge-based intelligent information and engineering systems. Lecture Notes in Computer Science, vol 4252. Springer, Berlin, Heidelberg.
  • Li, T.; Sun, M. A (2024). Cloud model-based CRITIC-EDAS decision-making approach with linguistic information for marine ranching site selection. Water, 16(5), 688.https://doi.org/10.3390/ w16050688
  • Lukić, R. (2023). Analysis of the performance of the Serbian economy based on the MEREC- WASPAS method. MARSONIA: Časopis za društvena i humanistička istraživanja, 2(1), 39-52.
  • Ma,X. (2025). New Approach Single Valued Neutrosophic Sets for Teaching Quality Challenges Evaluation in College Public English Broad Impacts, Neutrosophic Sets and Systems, 81(1), 61-78.
  • Mastilo, Z., Štilić, A., Gligović, D. & Puška, A. (2024). Assessing the banking sector of Bosnia and Herzegovina: An analysis of financial indicators through the MEREC and MARCOS methods. Journal of Central Banking Theory and Practice, 13(1), 167-197. https://doi.org/10.2478/jcbtp-2024-0008
  • Mijalkovski,S., Stefanov,V. & Mirakovski,D.(2024). Selection of the location of the main warehouse using the EDAS method, Natural Resources and Technology, 18(1), 32 – 38. https://doi.org/10.46763/NRT24181032m
  • Nartgün, Ş.S., Akın, M., Kösterelioğlu , M.A. & Sipahioğlu, M.(2013). İnsani gelişim indeksi göstergeleri açısından AB üyesi ve AB üyeliğine aday ülkelerin karşılaştırılması. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 3(1),80-89.
  • Okursoy, A. & Tezsürücü Coşansu, D. (2024). Zero emission electric vehicle selection using the MEREC-based CoCoSo method, Alphanumeric, 12 (1), 39-58. https://doi. org/10.17093/alphanumeric.1451556
  • Omrani, H., Alizadeh, A. & Amini, M. (2020). A new approach based on bwm and multimoora methods for calculating semi-human development index: An application for provinces of iran. Socio-economic Planning Sciences, 70, 100689. http://dx.doi.org/10.1016/j.seps.2019.02.004.
  • Orakçı, E. & Özdemir, A.(2017). Telafi edici çok kriterli karar verme yöntemleri ile Türkiye ve AB ülkelerinin insani gelişmişlik düzeylerinin belirlenmesi. Journal of Economics and Administrative Sciences, 19(1),61-74. http://dx.doi.org/10.5578/jeas.49652.
  • Özekenci, E.K. (2025). Evaluation of the logistics performance index of OECD countries based on hybrid MCDM methods, Marmara Üniversitesi İktisadi ve İdari Bilimler Dergisi, 47(1), 47-76. http://dx.doi.org/ 10.14780/ muiibd.1469898.
  • Özçekiç, E. (2025). Electric vehicle charging station positioning problem: multi-criteria decision making analysis with Entropy, CoCoSo and EDAS methods. Biga İktisadi ve İdari Bilimler Fakültesi Dergisi, 5(3), 187-202. https://doi.org/10.70754/biibfd.1594279
  • Paksoy, S. (2015). Ülke göstergelerinin vikor yöntemi ile değerlendirilmesi, Ekonomik ve Sosyal Araştırmalar Dergisi, 11(2), 153-169.
  • Ramachandran, S. M., Saravanan,V. & Nanjundan,P.(2023). Application of the EDAS Technique for Selecting the Electric Motor Vehicles, REST Journal on Advances in Mechanical Engineering Vol: 2(4), 27-36.
  • Safari, H.; Khanmohammadi, E.; Hafezamini, A. & Ahangari, S. S. (2013). A new technique for multi-criteria decision making based on modified similarity method. Middle-east Journal of Science and Research, 14(5), 712-719. http://dx.doi.org/10.5829/idosi.mejsr.2013.14.5.335.
  • Safari, H. & Ebrahimi, E. (2014). Using modified similarity multiple criteria decision making technique to rank countries in terms of human development index. Journal of Industrial Engineering and Management, 7(1), 254-275. https://doi.org/10.3926/jiem.837.
  • Salam, A. (2024). Selection of Appropriate UAV-Integrated with Mobile Edge Computing for Ensuring Safety and Security of Smart Cities. International Journal of Computers and Informatics, 5, 44–66. https://orcid.org/0009-0007-9358-9713.
  • Süzülmüş, S. & Yakut, E.(2024). CRITIC temelli PROMETHEE ve EDAS teknikleriyle bankaların finansal performanslarının belirlenerek karşılaştırılması. Manas Sosyal Araştırmalar Dergisi, 13(1), 218-239. doi:10.33206/mjss.1267073
  • Ulutaş, A., Balo, F. & Topal, A. (2023). Identifying the most efficient natural fibre for common commercial building insulation materials with an integrated PSI, MEREC, LOPCOW and MCRAT model. Polymers, 15(6), 1500. https://doi.org/10.3390/polym15061500
  • United Nations Development Programme (2023). Human development indices and indicators. Retrieved April 30, 2024, from http://hdr.undp.org/en/reports/global/hdr2023
  • Wang, Q., Cheng, T., Lu, Y., Liu, H., Zhang, R. & Huang, J.(2024) Underground mine safety and health: a hybrid merec–cocoso system for the selection of best sensor. Sensors, 24, 1285. https://doi.org/ 10.3390/s24041285
There are 43 citations in total.

Details

Primary Language English
Subjects Policy and Administration (Other)
Journal Section Research Article
Authors

V. Sinem Arıkan Kargı 0000-0003-3255-0165

Early Pub Date October 19, 2025
Publication Date October 24, 2025
Submission Date December 7, 2024
Acceptance Date October 10, 2025
Published in Issue Year 2025 Volume: 24 Issue: 4

Cite

APA Arıkan Kargı, V. S. (2025). Ranking G-20 Countries by Human Development Index Using Objective MCDM Techniques: An Integrated MEREC–EDAS Approach. Elektronik Sosyal Bilimler Dergisi, 24(4), 1579-1603. https://doi.org/10.17755/esosder.1597932