Yıl 2021,
Cilt: 9 Sayı: 2, 54 - 59, 30.08.2021
Figen Takıl Mutlu
,
Edanur Taştan
Öz
Bu makalede, Ads ve SIP-genişleyen özelliklerini sağlayan modüller araştırılmıştır. Elde edilen birçok sonucun yanı sıra, SA-genişleyen modüllerinin sınıfının direk toplamlar altında kapalı olmadığı gösterilmiştir. Ayrıca, SA-genişleyen modülünün direk toplananları ile ilgilenilmiştir. Bir modülün SA-genişleyen olması için gerekli ve yeterli koşullar verilmiştir. UC, SA ve SA-genişleyen kavramlarının, bir modülün dağılımlı yarı sürekli olması durumunda çakıştığı da gösterilmiştir.
Destekleyen Kurum
Eskişehir Teknik Üniversitesi
Kaynakça
- [1] Dung NV, Huynh DV, Smith PF, Wisbauer R. Extending Modules. Pitman RN Mathematics 313. Harlow: Longman, 1994.
- [2] Tercan A, Yucel CC. Module Theory, Extending Modules and Generalizations. Birkhauser, Basel, 2016.
- [3] Birkenmeier GF, Tercan A, Yucel CC. The extending condition relative to sets of submodules. Comm Algebra 2014; 42: 764-778.
- [4] Smith PF, Tercan A. Generalizations of CS-modules. Comm Algebra 1993; 21(6):1809-1847.
- [5] Takil F, Tercan A. Modules whose submodules are essentially embedded in direct summands. Comm Algebra 2009; 37(2): 460-469.
- [6] Takıl Mutlu F. On Ads-Modules with The SIP. Bull Iran Math Soc 2015; 41(6):1355-1363.
- [7] Fuchs L. Infinite Abelian Groups. vol. I. Pure Appl Math, Ser monogr Textb., vol 36, Academic Press, New York, San Francisco, London, 1970.
- [8] Burgess WD, Raphael R. On Modules with The Absolute Direct Summand Property. in: Ring Theory, Granville, OH, 1992, World Sci Publ, River Edge, NJ, 1993. pp. 137-148.
- [9] Wilson GV. Modules with the Direct Summand Intersection Property. Comm Algebra 1986; 14: 21-38.
- [10] Karabacak F, Tercan A. On Modules and Matrix Rings with SIP-Extending. Taiwanese J Math 2019; 11(4): 1137-1145.
- [11] Tasdemir O, Karabacak F. Generalized SIP-modules. Hacettepe J Mathematics and Statistics 2019; 48(4): 1037-1044.
- [12] Hamdouni, A, Özcan, A. Ç. and Harmancı, A. Characterization of modules and rings by the summand intersection property and the summand sum property. JP Jour. Algebra, Number Theory \& Appl. 2005; 5(3): 469-490.
- [13] Birkenmeier GF, Kim JY, Park JK. When is the Cs Condition Hereditary? Comm Algebra 1999; 27(8): 3875-3885.
- [14] Karabacak F. On Generalizations of Extending Modules. Kyungpook Math J 2009; 49: 557-562.
- [15] Quynh TC, Kosan MT. On Ads Modules and Rings. Comm Algebra 2014; 42(8): 3541-3551.
- [16] Kim NK, Lee Y. Armendariz Rings and Reduced Rings. J Algebra 2000; 223: 477-488.
- [17] Smith PF. Modules for which Every Submodule has a Unique Closure. Ring Theory, (S. K. Jain and S. T. Rizvi, eds.), New Jersey, World Scientific, 1993, pp. 302-313.
Yıl 2021,
Cilt: 9 Sayı: 2, 54 - 59, 30.08.2021
Figen Takıl Mutlu
,
Edanur Taştan
Öz
In this note we investigate modules with the Ads and the SIP-extending properties. Besides many results obtained, we show that the class of SA-extending modules is not closed under direct sums. Further we deal with direct summands of an SA-extending module. We give necessary and sufficient conditions for a module to be an SA-extending. It has been also shown that the concepts of UC, SA and SA-extending coincide when a module is distributive quasi continuous.
Kaynakça
- [1] Dung NV, Huynh DV, Smith PF, Wisbauer R. Extending Modules. Pitman RN Mathematics 313. Harlow: Longman, 1994.
- [2] Tercan A, Yucel CC. Module Theory, Extending Modules and Generalizations. Birkhauser, Basel, 2016.
- [3] Birkenmeier GF, Tercan A, Yucel CC. The extending condition relative to sets of submodules. Comm Algebra 2014; 42: 764-778.
- [4] Smith PF, Tercan A. Generalizations of CS-modules. Comm Algebra 1993; 21(6):1809-1847.
- [5] Takil F, Tercan A. Modules whose submodules are essentially embedded in direct summands. Comm Algebra 2009; 37(2): 460-469.
- [6] Takıl Mutlu F. On Ads-Modules with The SIP. Bull Iran Math Soc 2015; 41(6):1355-1363.
- [7] Fuchs L. Infinite Abelian Groups. vol. I. Pure Appl Math, Ser monogr Textb., vol 36, Academic Press, New York, San Francisco, London, 1970.
- [8] Burgess WD, Raphael R. On Modules with The Absolute Direct Summand Property. in: Ring Theory, Granville, OH, 1992, World Sci Publ, River Edge, NJ, 1993. pp. 137-148.
- [9] Wilson GV. Modules with the Direct Summand Intersection Property. Comm Algebra 1986; 14: 21-38.
- [10] Karabacak F, Tercan A. On Modules and Matrix Rings with SIP-Extending. Taiwanese J Math 2019; 11(4): 1137-1145.
- [11] Tasdemir O, Karabacak F. Generalized SIP-modules. Hacettepe J Mathematics and Statistics 2019; 48(4): 1037-1044.
- [12] Hamdouni, A, Özcan, A. Ç. and Harmancı, A. Characterization of modules and rings by the summand intersection property and the summand sum property. JP Jour. Algebra, Number Theory \& Appl. 2005; 5(3): 469-490.
- [13] Birkenmeier GF, Kim JY, Park JK. When is the Cs Condition Hereditary? Comm Algebra 1999; 27(8): 3875-3885.
- [14] Karabacak F. On Generalizations of Extending Modules. Kyungpook Math J 2009; 49: 557-562.
- [15] Quynh TC, Kosan MT. On Ads Modules and Rings. Comm Algebra 2014; 42(8): 3541-3551.
- [16] Kim NK, Lee Y. Armendariz Rings and Reduced Rings. J Algebra 2000; 223: 477-488.
- [17] Smith PF. Modules for which Every Submodule has a Unique Closure. Ring Theory, (S. K. Jain and S. T. Rizvi, eds.), New Jersey, World Scientific, 1993, pp. 302-313.