Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, , 332 - 348, 31.07.2019
https://doi.org/10.17943/etku.499407

Öz

Kaynakça

  • Abrami, P. C., Bernard, R. M., Bures, E. M., Borokhovski, E., & Tamim, R. M. (2011). Interaction in distance education and online learning: Using evidence and theory to improve practice. Journal of Computing in Higher Education, 23(2-3), 82–103.
  • Alcı, B. and Altun, S. (2007). Is there a difference in High School Students’ self regulatory and metacognitive skills towards mathematics with respect to gender, level, and field?. Journal of Çukurova University Institute of Social Sciences, 16(1), 33-44.
  • Anderson, T. (2003). Getting the mix right again: An updated and theoretical rationale for interaction. International Review of Research in Open and Distance Learning, 4(2), 1- 14.
  • Azevedo, R., Cromley, J. G., Winters, F. I., Moos, D. C. & Greene, J. A. (2005). Adaptive human scaffolding facilitates adolescents’ self-regulated learning with hypermedia. Instructional Science, 33(5-6), 381-412.
  • Bebell, D. R. (2004). Measuring teachers’ technology uses: Why multiple measures are more revealing. Journal of Research on Technology in Education, 37(1), 45-63.
  • Bouhnik, D., & Marcus, T. (2006). Interaction in distance-learning courses. Journal of the American Society for Information Science and Technology, 57(3), 299-305.
  • Broadbent, J., & Poon, W. L. (2015). Self-regulated learning strategies & academic achievement in online higher education learning environments: A systematic review. The Internet and Higher Education, 27, 1-13.
  • Cakir, R., & Yildirim, S. (2015). Who are they really? A review of the characteristics of pre-service ICT teachers in Turkey . The Asia-Pacific Education Researcher, 24 (1), 67-80.
  • Cho, M. H., & Cho, Y. (2017). Self-regulation in three types of online interaction: a scale development. Distance Education, 38(1), 70-83.
  • Cho, M. H., & Jonassen, D. (2009). Development of the human interaction dimension of the Self‐Regulated Learning Questionnaire in asynchronous online learning environments. Educational Psychology, 29(1), 117-138.
  • Cho, M. H., & Shen, D. (2013). Self-regulation in online learning. Distance Education, 34(3), 290-301.
  • Çiltaş, A. (2011). A Study on the Importance of Self-Regulation Teaching in Education. Journal of Mehmet Akif Ersoy University Institute of Social Sciences, 3(5), 1-11.
  • Dancy, C. P., & Reidy, J. (2002). Statistics without maths for psychology: Using SPSS for Windows. Pearson: Prentice Hall.
  • Dembo, M. H., & Eaton, M. J. (2000). Self-regulation of academic learning in middle-level schools. The Elementary School Journal, 100(5), 473-490.
  • Doğanay, A. (2008) Çağdaş sosyal bilgiler anlayışı ışığında yeni sosyal bilgiler programının değerlendirilmesi. Ç.Ü. Sosyal Bilimler Enstitüsü Dergisi, 17(2), 77-96.
  • Ertmer, P. A., Sadaf, A., & Ertmer, D. J. (2011). Student–content interactions in online course: The role of question prompts in facilitating higher-level engagement with course content. Journal of Computing in Higher Education, 23(2-3), 157-186.
  • Field, A. P. (2009). Discovering statistics using SPSS (3rd ed.). Los Angeles, CA: Sage.
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (8th ed.). New York: McGraw-Hill.
  • Guiller, J., Durndell, A., & Ross, A. (2008). Peer interaction and critical thinking: Face-to-face or online discussion?. Learning and instruction, 18(2), 187-200.
  • Haşlaman, T. (2017). Supporting Self-Regulated Learning: A Digital Storytelling Implementation. Elementary education online, 16(4), 1407-1424.
  • Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53–60.
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
  • Jonassen, D. (1991). Evaluating constructivistic learning. Educational Technology, 31(10), 28-33.
  • Lou, Y., Bernard, R. M., & Abrami, P. C. (2006). Media and pedagogy in undergraduate distance education: A theory-based meta-analysis of empirical literature. Educational Technology Research and Development, 5(2), 141–176.
  • Moore, M. G. (1989). Editorial: Three types of interaction. American Journal of Distance Education, 3(2), 1-7.
  • Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105(3), 430-445.
  • Pintrich, P.R., ve De Groot, E. (1990). Motivational and self regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33-40
  • Steiger, J. H. (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual differences, 42(5), 893-898.
  • Stevens, J. P. (2012). Applied multivariate statistics for the social sciences. New York (N.Y.): Routledge.
  • Sun, J. C. Y., & Rueda, R. (2012). Situational interest, computer self‐efficacy and self‐regulation: Their impact on student engagement in distance education. British Journal of Educational Technology, 43(2), 191-204.
  • Tuckman, B. W. (2007). The effect of motivational scaffolding on procrastinators' distance learning outcomes. Computers & Education, 49(2), 414-422.
  • Üredi, I., & Üredi, L. (2005). The predictive power of self-regulation strategies and motivational beliefs on mathematics achievement of primary school 8th grade students. Mersin University Journal of the Faculty of Education, 1(2), 250-260.
  • Wagner, E.D. (1994). In support of a functional definition of interaction. American Journal of Distance Education, 8(2), 6-26.
  • Wheaton, B., Muthen, B., Alwin, D. F., & Summers, G. F. (1977). Assessing reliability and stability in panel models. Sociological methodology, 8(1), 84-136.
  • Whipp, J. L. & Chiarelli, S. (2004). Self-regulation in a web-based course: a case study. Educational Technology Research and Development, 52 (4), 5-22.
  • Woolfolk, A. (2004). Educational Psycology. Boston: Allyn and Bacon.
  • Zimmerman, B. J., & Risemberg, R. (1997). Self- regulatory dimensions of academic learning and motivation. In G. D. Phye (Ed.), Hand- book of academic learning: Construction of knowledge (pp. 105-125). San Diego, CA: Ac- ademic Press.

ÜÇ ETKİLEŞİM TÜRÜNDE ÖZ DÜZENLEME ÖLÇEĞİNİN TÜRKÇE'YE UYARLANMASI: GEÇERLİK VE GÜVENİRLİK ÇALIŞMASI

Yıl 2019, , 332 - 348, 31.07.2019
https://doi.org/10.17943/etku.499407

Öz

Öz Düzenleme (ÖD), uzaktan eğitim programlarının başarıya
ulaşmasında öğrenci özerkliğinin bir boyutu olarak belirleyici rol oynamaktadır.
Bu bağlamda, uzaktan eğitim çalışmalarında öz düzenlemenin ölçülmesinin önemli olduğu
düşünülmektedir. Türk dili ve kültürüne uygun üç tür etkileşimde çevrimiçi
öz-düzenleme için bir ölçme aracının bulunmaması göz önüne alındığında, mevcut
çalışma Çevrimiçi Öz Düzenleme Anketini Türkçe'ye uyarlamayı amaçlamaktadır.
Veriler, çevrimiçi programlara kayıtlı 307 lisans ve yüksek lisans öğrencisinden
toplanmıştır. Ölçme aracı 30 maddeden ve üç faktörden oluşmaktadır; öğrenci ve
öğretmen arasındaki etkileşimde ÖD, öğrenci ve öğrenci arasındaki etkileşimde ÖD
ve öğrenci ile içerik arasındaki etkileşimde ÖD. Kapsam geçerliliği geliştirme
çalışmasında sağlanan aracın dil eşdeğerliği, geri çeviri prosedürü ile
sağlanmıştır. Yapı geçerliliğini test etmek için doğrulayıcı faktör analizi
yapılmıştır. İç tutarlılık Cronbach Alpha katsayısının hesaplanmasıyla, madde
tutarlılığı düzeltilmiş madde-toplam korelasyonlarının hesaplanmasıyla
sağlanmıştır. Son olarak, madde ayırıcılığı bağımsız örneklem t-testi yapılarak
test edilmiştir. Sonuçlar, üç tür etkileşimde Çevrimiçi Öz Düzenleme Anketi'nin,
Türk uzaktan eğitim ortamlarında kullanım için geçerli ve güvenilir bir araç
olduğunu göstermiştir.

Kaynakça

  • Abrami, P. C., Bernard, R. M., Bures, E. M., Borokhovski, E., & Tamim, R. M. (2011). Interaction in distance education and online learning: Using evidence and theory to improve practice. Journal of Computing in Higher Education, 23(2-3), 82–103.
  • Alcı, B. and Altun, S. (2007). Is there a difference in High School Students’ self regulatory and metacognitive skills towards mathematics with respect to gender, level, and field?. Journal of Çukurova University Institute of Social Sciences, 16(1), 33-44.
  • Anderson, T. (2003). Getting the mix right again: An updated and theoretical rationale for interaction. International Review of Research in Open and Distance Learning, 4(2), 1- 14.
  • Azevedo, R., Cromley, J. G., Winters, F. I., Moos, D. C. & Greene, J. A. (2005). Adaptive human scaffolding facilitates adolescents’ self-regulated learning with hypermedia. Instructional Science, 33(5-6), 381-412.
  • Bebell, D. R. (2004). Measuring teachers’ technology uses: Why multiple measures are more revealing. Journal of Research on Technology in Education, 37(1), 45-63.
  • Bouhnik, D., & Marcus, T. (2006). Interaction in distance-learning courses. Journal of the American Society for Information Science and Technology, 57(3), 299-305.
  • Broadbent, J., & Poon, W. L. (2015). Self-regulated learning strategies & academic achievement in online higher education learning environments: A systematic review. The Internet and Higher Education, 27, 1-13.
  • Cakir, R., & Yildirim, S. (2015). Who are they really? A review of the characteristics of pre-service ICT teachers in Turkey . The Asia-Pacific Education Researcher, 24 (1), 67-80.
  • Cho, M. H., & Cho, Y. (2017). Self-regulation in three types of online interaction: a scale development. Distance Education, 38(1), 70-83.
  • Cho, M. H., & Jonassen, D. (2009). Development of the human interaction dimension of the Self‐Regulated Learning Questionnaire in asynchronous online learning environments. Educational Psychology, 29(1), 117-138.
  • Cho, M. H., & Shen, D. (2013). Self-regulation in online learning. Distance Education, 34(3), 290-301.
  • Çiltaş, A. (2011). A Study on the Importance of Self-Regulation Teaching in Education. Journal of Mehmet Akif Ersoy University Institute of Social Sciences, 3(5), 1-11.
  • Dancy, C. P., & Reidy, J. (2002). Statistics without maths for psychology: Using SPSS for Windows. Pearson: Prentice Hall.
  • Dembo, M. H., & Eaton, M. J. (2000). Self-regulation of academic learning in middle-level schools. The Elementary School Journal, 100(5), 473-490.
  • Doğanay, A. (2008) Çağdaş sosyal bilgiler anlayışı ışığında yeni sosyal bilgiler programının değerlendirilmesi. Ç.Ü. Sosyal Bilimler Enstitüsü Dergisi, 17(2), 77-96.
  • Ertmer, P. A., Sadaf, A., & Ertmer, D. J. (2011). Student–content interactions in online course: The role of question prompts in facilitating higher-level engagement with course content. Journal of Computing in Higher Education, 23(2-3), 157-186.
  • Field, A. P. (2009). Discovering statistics using SPSS (3rd ed.). Los Angeles, CA: Sage.
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (8th ed.). New York: McGraw-Hill.
  • Guiller, J., Durndell, A., & Ross, A. (2008). Peer interaction and critical thinking: Face-to-face or online discussion?. Learning and instruction, 18(2), 187-200.
  • Haşlaman, T. (2017). Supporting Self-Regulated Learning: A Digital Storytelling Implementation. Elementary education online, 16(4), 1407-1424.
  • Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53–60.
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
  • Jonassen, D. (1991). Evaluating constructivistic learning. Educational Technology, 31(10), 28-33.
  • Lou, Y., Bernard, R. M., & Abrami, P. C. (2006). Media and pedagogy in undergraduate distance education: A theory-based meta-analysis of empirical literature. Educational Technology Research and Development, 5(2), 141–176.
  • Moore, M. G. (1989). Editorial: Three types of interaction. American Journal of Distance Education, 3(2), 1-7.
  • Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105(3), 430-445.
  • Pintrich, P.R., ve De Groot, E. (1990). Motivational and self regulated learning components of classroom academic performance. Journal of Educational Psychology, 82(1), 33-40
  • Steiger, J. H. (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality and Individual differences, 42(5), 893-898.
  • Stevens, J. P. (2012). Applied multivariate statistics for the social sciences. New York (N.Y.): Routledge.
  • Sun, J. C. Y., & Rueda, R. (2012). Situational interest, computer self‐efficacy and self‐regulation: Their impact on student engagement in distance education. British Journal of Educational Technology, 43(2), 191-204.
  • Tuckman, B. W. (2007). The effect of motivational scaffolding on procrastinators' distance learning outcomes. Computers & Education, 49(2), 414-422.
  • Üredi, I., & Üredi, L. (2005). The predictive power of self-regulation strategies and motivational beliefs on mathematics achievement of primary school 8th grade students. Mersin University Journal of the Faculty of Education, 1(2), 250-260.
  • Wagner, E.D. (1994). In support of a functional definition of interaction. American Journal of Distance Education, 8(2), 6-26.
  • Wheaton, B., Muthen, B., Alwin, D. F., & Summers, G. F. (1977). Assessing reliability and stability in panel models. Sociological methodology, 8(1), 84-136.
  • Whipp, J. L. & Chiarelli, S. (2004). Self-regulation in a web-based course: a case study. Educational Technology Research and Development, 52 (4), 5-22.
  • Woolfolk, A. (2004). Educational Psycology. Boston: Allyn and Bacon.
  • Zimmerman, B. J., & Risemberg, R. (1997). Self- regulatory dimensions of academic learning and motivation. In G. D. Phye (Ed.), Hand- book of academic learning: Construction of knowledge (pp. 105-125). San Diego, CA: Ac- ademic Press.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Recep Çakır 0000-0002-2641-5007

Mehmet Kara 0000-0003-2758-2015

Volkan Kukul 0000-0002-9546-3790

Yayımlanma Tarihi 31 Temmuz 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Çakır, R., Kara, M., & Kukul, V. (2019). ÜÇ ETKİLEŞİM TÜRÜNDE ÖZ DÜZENLEME ÖLÇEĞİNİN TÜRKÇE’YE UYARLANMASI: GEÇERLİK VE GÜVENİRLİK ÇALIŞMASI. Eğitim Teknolojisi Kuram Ve Uygulama, 9(2), 332-348. https://doi.org/10.17943/etku.499407