BibTex RIS Cite

DENTAL PROTEZLERDE KULLANILAN MIKNATISLARIN OLUŞTURDUĞU STATİK MANYETİK ALANIN İNSAN GİNGİVAL DOKU FİBROBLASTLARININ MİTOTİK AKTİVİTELERİNE OLAN ETKİLERİNİN İN VİTRO İNCELENMESİ

Year 2012, Volume: 21 Issue: 1, 9 - 19, 01.03.2012

Abstract

Bu çalışmanın amacı dental protezlerde kullanılan mıknatısların oluşturduğu statik manyetik alanın (SMA) insan gingival doku fibroblastlarının mitotik aktivitesine etkisinin in vitro olarak araştırılmasıdır.Bu araştırmada 500 gr çekme kuvvetinde Dyna dental mıknatıslar kullanıldı. Mıknatıslar tek ve çift olmak üzere iki ayrı düzende otopolimerizan akrilik rezine gömüldü. Bilgilendirilmiş onamları alındıktan sonra 14 bireyden alınan dişeti örnekleri kültüre edilerek 2 farklı mıknatıs düzeneğinin oluşturduğu ve şiddeti ölçülen SMA’ya maruz bırakıldı. Her bireyden alınan dişeti örneğinden deney ve kontrol olmak üzere iki ayrı kültür oluşturuldu. Toplamda 28 gingival fibroblast kültürü yapıldı. Kültürler sonlandırıldıktan sonra mitotik indeks analizi yapıldı. Veriler p=0,05 anlamlılık düzeyinde student t ve eşleştirilmiş t testi ile analiz edildi. İstatistiksel analiz sonuçlarına göre, iki deney grubu (Dyna-1ve 2) arasında mitotik indeks değerleri açısından fark istatistiksel olarak anlamlı bulunmadı (p=0,889). Mıknatıs uygulanması sonucu elde edilen mitotik indeks değerlerinin kendi kontrol değerleri ile karşılaştırıldığı grup içi karşılaştırmalarda da, fark istatistiksel olarak anlamlı bulunmadı (Dyna-1 için p=0,623; Dyna-2 için p=0,196). Bu sonuçlara göre uygulanan manyetik alanın gingival fibroblastlarının mitotik aktivitesini etkilemediği söylenebilir

References

  • Strnat KJ. The hard magnetic properties of rare earth-transition metal alloys. IEEE T Magn 1972; 8: 511-516.
  • Burns DR, Unger JW, Elswick RK, Beck DA. Prospective clinical evaluation of mandibular implant overdentures. Part I. Retention, stability and tissue response. J Prosthet Dent 1995; 73: 354-363.
  • Burns DR, Unger JW, Elswick RK, Beck DA. Prospective clinical evaluation of mandibular implant overdentures. Part II. Patient satisfaction and preference. J Prosthet Dent 1995; 73: 364-369.
  • Walmsley AD, Frame JW. Implant supported overdentures-the Birmingham experience. J Dent 1997; 25(Suppl 1): 543-547.
  • Linder-Aronson A, Lindskog S. Effects of static magnetic fields on human periodontal fibroblasts in vitro. Swed Dent J 1995; 19: 131-137.
  • Abdel-Kader HM, Aref MI, Hussein FA. Coating failure of commercial orthodontic magnets and DNA fragmentation of oral mucosa cells. Aust Orthod J 2008; 24: 32-40.
  • Hopp M, Rogaschewski S, Groth TH. Testing the cytotoxicity of metal alloys used as magnetic prosthetic devices. J Mater Sci Mater Med 2003; 14: 335-345.
  • Bondemark L, Kurol J, Larsson A. Long-term effects of orthodontic magnets on human buccal mucosa- a clinical, histological and immunohistochemical study. Eur J Orthod 1998; 20: 211-218.
  • Bondemark L, Kurol J, Larsson A. Human dental pulp and gingival tissue after static magnetic field exposure. Eur J Orthod 1995; 17: 85-91.
  • Mc Cann J, Dietrich F, Rafferty C, Martin AO. A critical review of the genotoxic potential of electric and magnetic fields. Mu- tat Res 1993; 297: 61-95.
  • US EPA. (United States Environmental Protection Agency) 1998. Health Effects Test Guidelines. OPPTS 870.5375. In vitro mammalian chromosome aberration test. EPA 712-C-98-223.
  • Pershad N. Longitudinal Study of Arch Dimensions in Relationship to Growth Pattern, Dental and Skeletal Age. Master of Science, Faculty of Graduate Studies of the University of Manitoba, Canada 2005.
  • Papadopoulos MA. Biological aspects of the use of permanent magnets and static magnetic fields in orthodontics. Hellenic Orthodontic Review 1998; 1: 145-157.
  • Becker JJ. Permanent magnets. Scientific American 1970; 223: 92-100.
  • Barnothy MF. Biological Effects of Magnetic Fields, Vol II, Plenum Publishing Corp, New York 1969, 103-126.
  • Busby DE. Space biomagnetics. Space Life Science 1968; 1: 23-63.
  • Jena AK, Duggal R, Batra P. Magnet as a dental material - An overview. Trends in Biomaterials and Artificial Organs 2003; 16 (2): 73-80.
  • Cohen SM, Ellwein LB. Cell proliferation in carcinogenesis. Science 1990; 249: 1007- 1011.
  • Löscher W, Liburdy RP. Animal and cellular studies on carcinogenic effects of low frequency (50/60-Hz) magnetic fields. Mutat Res 1998; 410: 185-220.
  • Linder-Aronson S, Lindskog S. A morphometric study of bone surfaces and skin reactions after stimulation with static magnetic fields in rats. Am J Orthod Dentofac Orthop 1991; 99: 44-48.
  • Linder-Aronson S, Lindskog S, Rygh P. Orthodontic magnets: effects on gingival epithelium and alveolar bone in monkeys. Eur J Orthod 1992; 14: 255-263.
  • Camilleri S, McDonald F. Static magnetic field effects on the sagittal suture in Rattus Norvegicus. Am J Orthod Dentofac Orthop 1993; 103: 240-246.
  • Linder-Aronson A, Rygh P, Lindskog S. Effects of orthodontic magnets on cutaneous epithelial thickness and tibial bone growth in rats. Acta Odontol Scand 1995; 53(4): 159- 163.
  • Thor AD, Liu S, Moore DH, Edgerton SM. Comparison of mitotic index, in vitro Bromodeoxyuridine labeling, and MIB-1 assays to quantitate proliferation in breast cancer. J C O 1999; 17: 470-477.
  • Erdal N, Gürgül S, Çelik A. Cytogenetic effects of extremely low frequency magnetic field on Wistar rat bone marrow. Mutat Res 2007; 630: 69-77.
  • Yamaguchi H, Hosokawa K, Soda A, Miyamoto H, Kinouchi Y. Effects of seven months exposure to a static 0,2 T magnetic field on growth and glicolytic activity of human gingival fibroblasts. Biochim Biophys Acta 1993; 1156: 302-306.
  • Yamamato Y, Ohsaki Y, Goto T, Nakasima A, Iijima T. Effects of static magnetic fields on bone formation in rat osteoblast cultures. J Dent Res 2003; 82(12): 962-966.
  • Browne RM. The in vitro assessment of the cytotoxicity of dental materials-does it have a role? Int Endod J 1988; 21: 50-58.
  • Mjör IA, Hensten-Pettersen A. The Biological Compatibility of Alternative Alloys. Int Dent J 1983; 33: 35-40.
  • Sato K, Yamaguchi H, Miyamoto H, Kinouchi Y. Growth of human cultured cells exposed to a non-homogeneous static magnetic field generated by Sm-Co magnets. Biochim Biophys Acta 1992; 1136: 231-238.
  • McDonald F. Effect of static magnetic fields on osteoblasts and fibroblasts in vitro. Bioelectromagnetics 1993; 14: 187-196.
  • Kim HJ, Chang IT, Heo SJ et al. Effect of magnetic field on the fibronectin adsorption, cell attachment and proliferation on titanium surface. Clin Oral Implants Res 2005; 16: 557 -562.

In Vitro Investigation of Effects of Static Magnetic Field Produced by Magnets Used in Dental Prostheses on Human Gingival Tissue Fibroblasts’ Mitotic Activity

Year 2012, Volume: 21 Issue: 1, 9 - 19, 01.03.2012

Abstract

The aim of this study is to investigate the effects of static magnetic field (SMF) produced by magnets used in dental prostheses, on human gingival tissue fibroblasts’ mitotic activity in vitro.For this investigation Dyna dental magnetic attachments which have 500 gr brake-away force were used. Magnets were embedded into cold curing acrylic resin for two different configuration including single and double magnets. After informed consent had been obtained from all subjects, gingival biopsies were taken from 14 individuals and cultured in SMF which is produced by two different magnet configurations. Each gingival biopsy divided into two pieces and cultured as experiment and control flasks. Thereby totally 28 gingival fibroblast cultures were conducted. After cultures had been terminated, mitotic index analysis was performed. The data was analyzed at p=0,05 significance level statistically by student t and paired t test. Our statistical evaluations reveoled that, the difference of mitotic index rates, between the two experimental groups (Dyna-1 and 2) was not statistically significant (p= 0,889). Intra-group comparisons (between experiment and control groups) of mitotic index rates did not reveal any statistically significant difference, either (For Dyna-1 p=0,62; for Dyna-2 p=0,196). In the light of these results, it can be said that magnetic field applied in this study, did not affect gingival fibroblasts’ mitotic activity

References

  • Strnat KJ. The hard magnetic properties of rare earth-transition metal alloys. IEEE T Magn 1972; 8: 511-516.
  • Burns DR, Unger JW, Elswick RK, Beck DA. Prospective clinical evaluation of mandibular implant overdentures. Part I. Retention, stability and tissue response. J Prosthet Dent 1995; 73: 354-363.
  • Burns DR, Unger JW, Elswick RK, Beck DA. Prospective clinical evaluation of mandibular implant overdentures. Part II. Patient satisfaction and preference. J Prosthet Dent 1995; 73: 364-369.
  • Walmsley AD, Frame JW. Implant supported overdentures-the Birmingham experience. J Dent 1997; 25(Suppl 1): 543-547.
  • Linder-Aronson A, Lindskog S. Effects of static magnetic fields on human periodontal fibroblasts in vitro. Swed Dent J 1995; 19: 131-137.
  • Abdel-Kader HM, Aref MI, Hussein FA. Coating failure of commercial orthodontic magnets and DNA fragmentation of oral mucosa cells. Aust Orthod J 2008; 24: 32-40.
  • Hopp M, Rogaschewski S, Groth TH. Testing the cytotoxicity of metal alloys used as magnetic prosthetic devices. J Mater Sci Mater Med 2003; 14: 335-345.
  • Bondemark L, Kurol J, Larsson A. Long-term effects of orthodontic magnets on human buccal mucosa- a clinical, histological and immunohistochemical study. Eur J Orthod 1998; 20: 211-218.
  • Bondemark L, Kurol J, Larsson A. Human dental pulp and gingival tissue after static magnetic field exposure. Eur J Orthod 1995; 17: 85-91.
  • Mc Cann J, Dietrich F, Rafferty C, Martin AO. A critical review of the genotoxic potential of electric and magnetic fields. Mu- tat Res 1993; 297: 61-95.
  • US EPA. (United States Environmental Protection Agency) 1998. Health Effects Test Guidelines. OPPTS 870.5375. In vitro mammalian chromosome aberration test. EPA 712-C-98-223.
  • Pershad N. Longitudinal Study of Arch Dimensions in Relationship to Growth Pattern, Dental and Skeletal Age. Master of Science, Faculty of Graduate Studies of the University of Manitoba, Canada 2005.
  • Papadopoulos MA. Biological aspects of the use of permanent magnets and static magnetic fields in orthodontics. Hellenic Orthodontic Review 1998; 1: 145-157.
  • Becker JJ. Permanent magnets. Scientific American 1970; 223: 92-100.
  • Barnothy MF. Biological Effects of Magnetic Fields, Vol II, Plenum Publishing Corp, New York 1969, 103-126.
  • Busby DE. Space biomagnetics. Space Life Science 1968; 1: 23-63.
  • Jena AK, Duggal R, Batra P. Magnet as a dental material - An overview. Trends in Biomaterials and Artificial Organs 2003; 16 (2): 73-80.
  • Cohen SM, Ellwein LB. Cell proliferation in carcinogenesis. Science 1990; 249: 1007- 1011.
  • Löscher W, Liburdy RP. Animal and cellular studies on carcinogenic effects of low frequency (50/60-Hz) magnetic fields. Mutat Res 1998; 410: 185-220.
  • Linder-Aronson S, Lindskog S. A morphometric study of bone surfaces and skin reactions after stimulation with static magnetic fields in rats. Am J Orthod Dentofac Orthop 1991; 99: 44-48.
  • Linder-Aronson S, Lindskog S, Rygh P. Orthodontic magnets: effects on gingival epithelium and alveolar bone in monkeys. Eur J Orthod 1992; 14: 255-263.
  • Camilleri S, McDonald F. Static magnetic field effects on the sagittal suture in Rattus Norvegicus. Am J Orthod Dentofac Orthop 1993; 103: 240-246.
  • Linder-Aronson A, Rygh P, Lindskog S. Effects of orthodontic magnets on cutaneous epithelial thickness and tibial bone growth in rats. Acta Odontol Scand 1995; 53(4): 159- 163.
  • Thor AD, Liu S, Moore DH, Edgerton SM. Comparison of mitotic index, in vitro Bromodeoxyuridine labeling, and MIB-1 assays to quantitate proliferation in breast cancer. J C O 1999; 17: 470-477.
  • Erdal N, Gürgül S, Çelik A. Cytogenetic effects of extremely low frequency magnetic field on Wistar rat bone marrow. Mutat Res 2007; 630: 69-77.
  • Yamaguchi H, Hosokawa K, Soda A, Miyamoto H, Kinouchi Y. Effects of seven months exposure to a static 0,2 T magnetic field on growth and glicolytic activity of human gingival fibroblasts. Biochim Biophys Acta 1993; 1156: 302-306.
  • Yamamato Y, Ohsaki Y, Goto T, Nakasima A, Iijima T. Effects of static magnetic fields on bone formation in rat osteoblast cultures. J Dent Res 2003; 82(12): 962-966.
  • Browne RM. The in vitro assessment of the cytotoxicity of dental materials-does it have a role? Int Endod J 1988; 21: 50-58.
  • Mjör IA, Hensten-Pettersen A. The Biological Compatibility of Alternative Alloys. Int Dent J 1983; 33: 35-40.
  • Sato K, Yamaguchi H, Miyamoto H, Kinouchi Y. Growth of human cultured cells exposed to a non-homogeneous static magnetic field generated by Sm-Co magnets. Biochim Biophys Acta 1992; 1136: 231-238.
  • McDonald F. Effect of static magnetic fields on osteoblasts and fibroblasts in vitro. Bioelectromagnetics 1993; 14: 187-196.
  • Kim HJ, Chang IT, Heo SJ et al. Effect of magnetic field on the fibronectin adsorption, cell attachment and proliferation on titanium surface. Clin Oral Implants Res 2005; 16: 557 -562.
There are 32 citations in total.

Details

Other ID JA36KD73ZU
Journal Section Research Article
Authors

Filiz Yağcı This is me

Bülent Kesim This is me

Hilal Akalın This is me

Munis Dündar This is me

Halil İbrahim Kılınç This is me

Publication Date March 1, 2012
Submission Date March 1, 2012
Published in Issue Year 2012 Volume: 21 Issue: 1

Cite

APA Yağcı, F., Kesim, B., Akalın, H., Dündar, M., et al. (2012). DENTAL PROTEZLERDE KULLANILAN MIKNATISLARIN OLUŞTURDUĞU STATİK MANYETİK ALANIN İNSAN GİNGİVAL DOKU FİBROBLASTLARININ MİTOTİK AKTİVİTELERİNE OLAN ETKİLERİNİN İN VİTRO İNCELENMESİ. Sağlık Bilimleri Dergisi, 21(1), 9-19.
AMA Yağcı F, Kesim B, Akalın H, Dündar M, Kılınç Hİ. DENTAL PROTEZLERDE KULLANILAN MIKNATISLARIN OLUŞTURDUĞU STATİK MANYETİK ALANIN İNSAN GİNGİVAL DOKU FİBROBLASTLARININ MİTOTİK AKTİVİTELERİNE OLAN ETKİLERİNİN İN VİTRO İNCELENMESİ. JHS. March 2012;21(1):9-19.
Chicago Yağcı, Filiz, Bülent Kesim, Hilal Akalın, Munis Dündar, and Halil İbrahim Kılınç. “DENTAL PROTEZLERDE KULLANILAN MIKNATISLARIN OLUŞTURDUĞU STATİK MANYETİK ALANIN İNSAN GİNGİVAL DOKU FİBROBLASTLARININ MİTOTİK AKTİVİTELERİNE OLAN ETKİLERİNİN İN VİTRO İNCELENMESİ”. Sağlık Bilimleri Dergisi 21, no. 1 (March 2012): 9-19.
EndNote Yağcı F, Kesim B, Akalın H, Dündar M, Kılınç Hİ (March 1, 2012) DENTAL PROTEZLERDE KULLANILAN MIKNATISLARIN OLUŞTURDUĞU STATİK MANYETİK ALANIN İNSAN GİNGİVAL DOKU FİBROBLASTLARININ MİTOTİK AKTİVİTELERİNE OLAN ETKİLERİNİN İN VİTRO İNCELENMESİ. Sağlık Bilimleri Dergisi 21 1 9–19.
IEEE F. Yağcı, B. Kesim, H. Akalın, M. Dündar, and H. İ. Kılınç, “DENTAL PROTEZLERDE KULLANILAN MIKNATISLARIN OLUŞTURDUĞU STATİK MANYETİK ALANIN İNSAN GİNGİVAL DOKU FİBROBLASTLARININ MİTOTİK AKTİVİTELERİNE OLAN ETKİLERİNİN İN VİTRO İNCELENMESİ”, JHS, vol. 21, no. 1, pp. 9–19, 2012.
ISNAD Yağcı, Filiz et al. “DENTAL PROTEZLERDE KULLANILAN MIKNATISLARIN OLUŞTURDUĞU STATİK MANYETİK ALANIN İNSAN GİNGİVAL DOKU FİBROBLASTLARININ MİTOTİK AKTİVİTELERİNE OLAN ETKİLERİNİN İN VİTRO İNCELENMESİ”. Sağlık Bilimleri Dergisi 21/1 (March 2012), 9-19.
JAMA Yağcı F, Kesim B, Akalın H, Dündar M, Kılınç Hİ. DENTAL PROTEZLERDE KULLANILAN MIKNATISLARIN OLUŞTURDUĞU STATİK MANYETİK ALANIN İNSAN GİNGİVAL DOKU FİBROBLASTLARININ MİTOTİK AKTİVİTELERİNE OLAN ETKİLERİNİN İN VİTRO İNCELENMESİ. JHS. 2012;21:9–19.
MLA Yağcı, Filiz et al. “DENTAL PROTEZLERDE KULLANILAN MIKNATISLARIN OLUŞTURDUĞU STATİK MANYETİK ALANIN İNSAN GİNGİVAL DOKU FİBROBLASTLARININ MİTOTİK AKTİVİTELERİNE OLAN ETKİLERİNİN İN VİTRO İNCELENMESİ”. Sağlık Bilimleri Dergisi, vol. 21, no. 1, 2012, pp. 9-19.
Vancouver Yağcı F, Kesim B, Akalın H, Dündar M, Kılınç Hİ. DENTAL PROTEZLERDE KULLANILAN MIKNATISLARIN OLUŞTURDUĞU STATİK MANYETİK ALANIN İNSAN GİNGİVAL DOKU FİBROBLASTLARININ MİTOTİK AKTİVİTELERİNE OLAN ETKİLERİNİN İN VİTRO İNCELENMESİ. JHS. 2012;21(1):9-19.