Research Article
BibTex RIS Cite

ORTOFİTALDEHİT İLE ORTOFİTALDEHİT-GÜMÜŞ NANOPARTİKÜL ve ORTOFİTALDEHİT GÜMÜŞ GRAFENOKSİT NANOPARTİKÜLLERİN ANTİMİKROBİYAL ETKİNLİĞİNİN KARŞILAŞTIRILMASI

Year 2023, Volume: 32 Issue: 1, 113 - 118, 03.04.2023
https://doi.org/10.34108/eujhs.1207158

Abstract

Ülkemizde gastroenteroloji kliniklerinde sıklıkla invaziv prosedürler uygulanmakta ve maliyeti oldukça yüksek olmaktadır. Bu amaçla bu kliniklerde sterilizasyonda önemli yeri olan ortofitaldehit (OPA) ile nanopartiküller sentezlenmiş ve ortofitaldehit kullanım miktarı azaltılmak sureti ile elde edilen nanokompozitlerin, sterilizasyon etkinliğini arttırması hedeflenmiştir. OPA gümüş ve grafenoksit nanopartiküller sentezlenmiş ve etkin çapları (hidrodinamik çaplar) ile yüzey yükleri sırasıyla dinamik ışık saçılma (DLS) ve Zeta potansiyel (ZT) ölçümleri ile belirlenmiştir. Ortofitaldehit ve nanokompozitlerin Staphylococcusaureus (S. aureus) ATCC 25923, Escherichiacoli (E. coli) ATCC 35218 ve Candidaalbicans (C. albicans) ATCC 90028 standart suşlarına karşı antimikrobiyal etkinlikleri sıvı mikrodilüsyon yöntemi kullanılarakyüzde inhibisyon metodu ile hesaplanmıştır. OPA@AgNP’lerin STEM ile 10-25 nm boyutunda olduğu belirlenmiştir. OPA@AgNP ve OPA@Ag@GONK’lerin olarak sırasıyla ~430 ve ~415 nmabsorbans piki olduğu tespit edilmiştir. OPA@AgNP ve OPA@Ag@GONK’lerin yüzey yükü sırasıyla -33 mV ile -46 mV olarak belirlenmiştir. OPA@Ag@GONK’lerin hidrodinamik çapı ise 1250 nm civarında ölçülmüştür. Grafenoksit negatif yüklü bir malzemedir, üzerine negatif yüklü OPA@AgNP’ler(-33 mV) oluştuğunda yeni malzeme olan OPA@Ag@GONK’lerin yüzey yükü -46 mV’a çıkmıştır. Sonuçlar birbiri ile uyumludur.Test edilen tüm mikroorganizmalarda genel olarak sırasıyla OPA@Ag@GONK, OPA@AgNPve OPA arasında anlamlı bir fark (p<0.001) olduğu görülmektedir. Sentezlenen nanokompozitler OPA’dan sentezlenen ilk nanokompozitler olma özelliğini taşımaktadır. Bununla birlikte tek başına OPA kullanımından daha yüksek antimikrobiyal etkinliğe sahip olmaları yönüyle de önem arz etmektedir.

Supporting Institution

Erciye Üniversitesi

Project Number

-

Thanks

-

References

  • Rutala WA, Weber DJ. Disinfection and sterilization in healthcare facilities: what clinicians need to know. Clin Infect Dis 2004; 39(5):702-709.
  • Marchese V, Di Carlo D, Fazio G, et al. Microbiological surveillance of endoscopes in a Southern Italian transplantation hospital: a retrospective study from 2016 to 2019. Int J of Environ Res Public Health 2021;18(6):3057-3066.
  • Yi Y, HaoLi-m, MaSr, et al. A pilot study on using chlorinedioxidegas for disinfection of gastrointestinal endoscopes. JZhejiang Univ Sci B2016; 17, 526-536.
  • GregoryAW, Schaalje GB, Smart JD, et al. Themyco bactericidalefficacy of ortho-phthalaldehyde and the comparative resistances of Mycobacteriumbovis, Mycobacteriumterrae, and Mycobacteriumchelonae. Infect Control Hosp Epidemiol 1999; 20: 324-330.
  • Rutala WA, Weber DJ. Guide line for disinfection and sterilization in health care facilities: recommendations of the CDC. Healthcare Infection Control Practices Advisory Committee 2008;1-48.
  • Rutala WA, Weber DJ. Selection and use of disinfectants in healthcare. In: Mayhall CG, eds. Hospital epidemiology and infection control. Philadelphia: Lippincott, Williams &Wilkins 2004:pp 1473-1522.
  • Altinsoy BD, Karatoprak GS, Ocsoy I. Extracellular directed AgNPs formation and investigation of their antimicrobial and cytotoxic properties. Saudi Pharm J 2019; 27:9-16.
  • Kim KJ, Sung WS, Suh BK, et al. Antifungal activity and mode of action of silver nano particles on Candidaalbicans. Biometals 2009; 22:235-242.
  • Ocsoy I, Paret ML, Ocsoy MA, et al. Nanotechnology in plant disease management: DNA-directed silvernanoparticles on grapheneoxide as an antibacterial against Xanthomonasperforans. ACS Nano.2013; 7:8972-8980.
  • Liu J, Cui J, Viela F, et al. Insitu production of silvernanoparticles on an aldehyde-equippedconjugated porouspolymer and subsequentheterogeneousr eduction of aromatic nitrogroups at room temperature. Chem Comm 2015; 51(61):12197-12200.
  • Bao Y, Tian C, Yu H, et al. Insitu gren synthesis of grapheneoxide-silvernanoparticles composite with using gallicacid. Front Chem. 2022;10:1-11.
  • Clinical Laboratory Standard Institute (CLSI). Methods for dilution antimicrobial susceptibilitytests for bacteri athatgrowaerobically. CLSI standard M07, 2018 11th ed. Wayne, PA.
  • Clinical Laboratory Standard Institute (CLSI). Reference method for brothdilution antifungal susceptibilitytesting of yeasts; Approved Standards-Second Edition, in CLSI document M07-A10, 2012 CLSI Pennsylvania, USA
  • Collins J. Optimizing the decontamination and reprocessing of endoscopice quipment. Techniq Gastrointest Endosc 2021;23(4): 363-370.
  • Society of Gastroenterology Nurses and Associates. SGNA guidelines for nursing care of the patient receivings edation and analgesia in the gastrointestinal endoscopy setting. Gastroenterol Nurs 2000; 23:125-129.
  • Walter V. Reprocessing of flexible gastrointestinal endoscopes: an American Society for Gastrointestinal Endoscopy white paper. Gastroenterol Nurs 1996; 19:109-112.
  • West AB, Kuan SF, Bennick M, Lagarde S. Glutaraldehydecolitis following endoscopy: clinical and pathological features and investigation of an out break. Gastroenterol 1995; 108:1250-1255.
  • Park S, Jang JY, Koo JS, et al. A review of currentdisinfectants for gastrointestinal endoscopic reprocessing. Clinendosc 2013;46(4): 337-341.
  • Rideout K, Teschke K, Dimich-Ward H, et al. Considering risks to health care workers from glutaraldehyde alternatives in high level disinfection. J Hosp Infect2005; 59:4-11.
  • Swamy MK, Akhtar MS, Mohanty SK, et al. Synthesis and characterization of silvernanoparticles using fruit extract of Momordicacymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta A Mol Biomol Spectrosc 2015; 151;939-944.
  • Durán N, Durán M, Jesus M.B. De, et al. Silver nanoparticles: A newview on mechanisticaspects on antimicrobialactivity. Nanomed 2016;12(3): 789-799.
  • Singh P, Garg A, Pandit S, et al. Antimicrobial Effects of Biogenic Nanoparticles. Nanomaterials 2018; 8:1-19.
  • Karadeniz HC. Endoskop Dezenfeksiyonu. 6. Ulusal Sterilizasyon Dezenfeksiyon Kongresi Bildiri Kitabı,Antalya 1-5 Nisan 2009; ss 157-186.

COMPARISON OF ANTIMICROBIAL EFFICIENCY OF ORTOPHITALDEHYDE AND ORTOPHITALDEHYDE-SILVER NANOPARTICLE AND ORTOPHITALDEHYDE SILVER GRAPHENOXIDE NANOPARTICLE

Year 2023, Volume: 32 Issue: 1, 113 - 118, 03.04.2023
https://doi.org/10.34108/eujhs.1207158

Abstract

All invasive procedures in volve the contact of a medical device or surgical instrument witht hepatient's sterile tissue or mucosal surfaces. At this point, the greatest risk is that pathogenic microorganism senter the body and cause infection. In our country, such invasive procedure sarefre quently performed in gastroenterology clinics and their cost is quite high. For this purpose, nanoparticles were synthesized with orthophtaldehyde (OPA), which is important in sterilization in the seclinics, and it is aimed to increase the sterilization efficiency of the nanocomposite obtained by reducing the amount of orthophtaldehyde use. OPA silver and graphenoxide nanoparticles were synthesized and their effective diameters (hydro dynamic diameters) and surface charges were determined by dynamic light scattering (DLS) and Zetapotential (ZT) measurements, respectively. Antimicrobial activities of orthophtaldehyde and nanocomposites against Staphylococcusaureus (S. aureus) ATCC 25923, Escherichiacoli (E. coli) ATCC 35218 and Candidaalbicans (C. albicans) ATCC 90028 standard strains were calculated by percent inhibition method using liquid microdilution method.OPA@AgNPs were determined to be 10-25 nm in size by STEM. OPA@AgNPandOPA@Ag@GONKs was determined as ~430 and ~415 nm absorbance peaks, respectively. The surface charges of OPA@AgNPandOPA@Ag@GONKs were determined as -33 m Vand -46 mV, respectively. The hydrodynamic diameter of OPA@Ag@GONKs was measure daround 1250 nm. Graphenoxide is a negatively charged material. When negatively charged OPA@AgNPs (-33 mV) were formed on it, the surface charge of the new material OPA@Ag@GONKsincreased to -46 mV. The results are compatible withe ach other. Although C.albicansis at a higher rate, it is seen that there is a significant difference (p<0.001) between OPA@Ag@GONK, OPA@AgNP and OPA in all tested micro organisms, respectively. Thesyn the size dnano composites are the first to be synthesized from OPA. However, it is also important in terms of having a higher antimicrobial activity than the use of OPA alone. In this context, nanocomposites synthesized using OPA can reduce the use of chemicals and allow a more effective dis infection with less active substance.

Project Number

-

References

  • Rutala WA, Weber DJ. Disinfection and sterilization in healthcare facilities: what clinicians need to know. Clin Infect Dis 2004; 39(5):702-709.
  • Marchese V, Di Carlo D, Fazio G, et al. Microbiological surveillance of endoscopes in a Southern Italian transplantation hospital: a retrospective study from 2016 to 2019. Int J of Environ Res Public Health 2021;18(6):3057-3066.
  • Yi Y, HaoLi-m, MaSr, et al. A pilot study on using chlorinedioxidegas for disinfection of gastrointestinal endoscopes. JZhejiang Univ Sci B2016; 17, 526-536.
  • GregoryAW, Schaalje GB, Smart JD, et al. Themyco bactericidalefficacy of ortho-phthalaldehyde and the comparative resistances of Mycobacteriumbovis, Mycobacteriumterrae, and Mycobacteriumchelonae. Infect Control Hosp Epidemiol 1999; 20: 324-330.
  • Rutala WA, Weber DJ. Guide line for disinfection and sterilization in health care facilities: recommendations of the CDC. Healthcare Infection Control Practices Advisory Committee 2008;1-48.
  • Rutala WA, Weber DJ. Selection and use of disinfectants in healthcare. In: Mayhall CG, eds. Hospital epidemiology and infection control. Philadelphia: Lippincott, Williams &Wilkins 2004:pp 1473-1522.
  • Altinsoy BD, Karatoprak GS, Ocsoy I. Extracellular directed AgNPs formation and investigation of their antimicrobial and cytotoxic properties. Saudi Pharm J 2019; 27:9-16.
  • Kim KJ, Sung WS, Suh BK, et al. Antifungal activity and mode of action of silver nano particles on Candidaalbicans. Biometals 2009; 22:235-242.
  • Ocsoy I, Paret ML, Ocsoy MA, et al. Nanotechnology in plant disease management: DNA-directed silvernanoparticles on grapheneoxide as an antibacterial against Xanthomonasperforans. ACS Nano.2013; 7:8972-8980.
  • Liu J, Cui J, Viela F, et al. Insitu production of silvernanoparticles on an aldehyde-equippedconjugated porouspolymer and subsequentheterogeneousr eduction of aromatic nitrogroups at room temperature. Chem Comm 2015; 51(61):12197-12200.
  • Bao Y, Tian C, Yu H, et al. Insitu gren synthesis of grapheneoxide-silvernanoparticles composite with using gallicacid. Front Chem. 2022;10:1-11.
  • Clinical Laboratory Standard Institute (CLSI). Methods for dilution antimicrobial susceptibilitytests for bacteri athatgrowaerobically. CLSI standard M07, 2018 11th ed. Wayne, PA.
  • Clinical Laboratory Standard Institute (CLSI). Reference method for brothdilution antifungal susceptibilitytesting of yeasts; Approved Standards-Second Edition, in CLSI document M07-A10, 2012 CLSI Pennsylvania, USA
  • Collins J. Optimizing the decontamination and reprocessing of endoscopice quipment. Techniq Gastrointest Endosc 2021;23(4): 363-370.
  • Society of Gastroenterology Nurses and Associates. SGNA guidelines for nursing care of the patient receivings edation and analgesia in the gastrointestinal endoscopy setting. Gastroenterol Nurs 2000; 23:125-129.
  • Walter V. Reprocessing of flexible gastrointestinal endoscopes: an American Society for Gastrointestinal Endoscopy white paper. Gastroenterol Nurs 1996; 19:109-112.
  • West AB, Kuan SF, Bennick M, Lagarde S. Glutaraldehydecolitis following endoscopy: clinical and pathological features and investigation of an out break. Gastroenterol 1995; 108:1250-1255.
  • Park S, Jang JY, Koo JS, et al. A review of currentdisinfectants for gastrointestinal endoscopic reprocessing. Clinendosc 2013;46(4): 337-341.
  • Rideout K, Teschke K, Dimich-Ward H, et al. Considering risks to health care workers from glutaraldehyde alternatives in high level disinfection. J Hosp Infect2005; 59:4-11.
  • Swamy MK, Akhtar MS, Mohanty SK, et al. Synthesis and characterization of silvernanoparticles using fruit extract of Momordicacymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta A Mol Biomol Spectrosc 2015; 151;939-944.
  • Durán N, Durán M, Jesus M.B. De, et al. Silver nanoparticles: A newview on mechanisticaspects on antimicrobialactivity. Nanomed 2016;12(3): 789-799.
  • Singh P, Garg A, Pandit S, et al. Antimicrobial Effects of Biogenic Nanoparticles. Nanomaterials 2018; 8:1-19.
  • Karadeniz HC. Endoskop Dezenfeksiyonu. 6. Ulusal Sterilizasyon Dezenfeksiyon Kongresi Bildiri Kitabı,Antalya 1-5 Nisan 2009; ss 157-186.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects ​Internal Diseases
Journal Section Research Article
Authors

Gülten Can Sezgin 0000-0001-5537-7882

Nilay Ildiz 0000-0002-3799-856X

Project Number -
Early Pub Date March 28, 2023
Publication Date April 3, 2023
Submission Date November 19, 2022
Published in Issue Year 2023 Volume: 32 Issue: 1

Cite

APA Can Sezgin, G., & Ildiz, N. (2023). ORTOFİTALDEHİT İLE ORTOFİTALDEHİT-GÜMÜŞ NANOPARTİKÜL ve ORTOFİTALDEHİT GÜMÜŞ GRAFENOKSİT NANOPARTİKÜLLERİN ANTİMİKROBİYAL ETKİNLİĞİNİN KARŞILAŞTIRILMASI. Sağlık Bilimleri Dergisi, 32(1), 113-118. https://doi.org/10.34108/eujhs.1207158
AMA Can Sezgin G, Ildiz N. ORTOFİTALDEHİT İLE ORTOFİTALDEHİT-GÜMÜŞ NANOPARTİKÜL ve ORTOFİTALDEHİT GÜMÜŞ GRAFENOKSİT NANOPARTİKÜLLERİN ANTİMİKROBİYAL ETKİNLİĞİNİN KARŞILAŞTIRILMASI. JHS. April 2023;32(1):113-118. doi:10.34108/eujhs.1207158
Chicago Can Sezgin, Gülten, and Nilay Ildiz. “ORTOFİTALDEHİT İLE ORTOFİTALDEHİT-GÜMÜŞ NANOPARTİKÜL Ve ORTOFİTALDEHİT GÜMÜŞ GRAFENOKSİT NANOPARTİKÜLLERİN ANTİMİKROBİYAL ETKİNLİĞİNİN KARŞILAŞTIRILMASI”. Sağlık Bilimleri Dergisi 32, no. 1 (April 2023): 113-18. https://doi.org/10.34108/eujhs.1207158.
EndNote Can Sezgin G, Ildiz N (April 1, 2023) ORTOFİTALDEHİT İLE ORTOFİTALDEHİT-GÜMÜŞ NANOPARTİKÜL ve ORTOFİTALDEHİT GÜMÜŞ GRAFENOKSİT NANOPARTİKÜLLERİN ANTİMİKROBİYAL ETKİNLİĞİNİN KARŞILAŞTIRILMASI. Sağlık Bilimleri Dergisi 32 1 113–118.
IEEE G. Can Sezgin and N. Ildiz, “ORTOFİTALDEHİT İLE ORTOFİTALDEHİT-GÜMÜŞ NANOPARTİKÜL ve ORTOFİTALDEHİT GÜMÜŞ GRAFENOKSİT NANOPARTİKÜLLERİN ANTİMİKROBİYAL ETKİNLİĞİNİN KARŞILAŞTIRILMASI”, JHS, vol. 32, no. 1, pp. 113–118, 2023, doi: 10.34108/eujhs.1207158.
ISNAD Can Sezgin, Gülten - Ildiz, Nilay. “ORTOFİTALDEHİT İLE ORTOFİTALDEHİT-GÜMÜŞ NANOPARTİKÜL Ve ORTOFİTALDEHİT GÜMÜŞ GRAFENOKSİT NANOPARTİKÜLLERİN ANTİMİKROBİYAL ETKİNLİĞİNİN KARŞILAŞTIRILMASI”. Sağlık Bilimleri Dergisi 32/1 (April 2023), 113-118. https://doi.org/10.34108/eujhs.1207158.
JAMA Can Sezgin G, Ildiz N. ORTOFİTALDEHİT İLE ORTOFİTALDEHİT-GÜMÜŞ NANOPARTİKÜL ve ORTOFİTALDEHİT GÜMÜŞ GRAFENOKSİT NANOPARTİKÜLLERİN ANTİMİKROBİYAL ETKİNLİĞİNİN KARŞILAŞTIRILMASI. JHS. 2023;32:113–118.
MLA Can Sezgin, Gülten and Nilay Ildiz. “ORTOFİTALDEHİT İLE ORTOFİTALDEHİT-GÜMÜŞ NANOPARTİKÜL Ve ORTOFİTALDEHİT GÜMÜŞ GRAFENOKSİT NANOPARTİKÜLLERİN ANTİMİKROBİYAL ETKİNLİĞİNİN KARŞILAŞTIRILMASI”. Sağlık Bilimleri Dergisi, vol. 32, no. 1, 2023, pp. 113-8, doi:10.34108/eujhs.1207158.
Vancouver Can Sezgin G, Ildiz N. ORTOFİTALDEHİT İLE ORTOFİTALDEHİT-GÜMÜŞ NANOPARTİKÜL ve ORTOFİTALDEHİT GÜMÜŞ GRAFENOKSİT NANOPARTİKÜLLERİN ANTİMİKROBİYAL ETKİNLİĞİNİN KARŞILAŞTIRILMASI. JHS. 2023;32(1):113-8.