Review
BibTex RIS Cite

DIVA (Differentiating Infected from Vaccinated Animals) Vaccines and Strategies

Year 2022, Volume: 33 Issue: 1, 102 - 109, 15.06.2022
https://doi.org/10.35864/evmd.932993

Abstract

In veterinary medicine, vaccination is one of the most effective techniques for control and prevention of diseases. When other methods fail in control of animal diseases, different vaccines and strategies are developed. DIVA (Differentiating Infected from Vaccinated Animals) vaccines lacking one or more antigenic epitope(s)/ protein(s) in the prevailing field strain and the accompanying diagnostic tests are effective in eradication and control of diseases. While currently used vaccines can not distinguish between vaccinated and infected animals, DIVA vaccines can be very useful for the purpose. Serological tests, such as ELISA (Enzyme-Linked ImmunoSorbent Assay), used together with DIVA vaccines, can be used to determine which animals are infected and which are vaccinated. DIVA vaccines and strategies for some animal diseases have been developed and continue to be developed.
In this review, it is aimed to explain the general characteristics, importance, production, advantages of DIVA vaccines and strategies and their use in various animal diseases.

References

  • Akan M, Öncel T, Sareyyüpoğlu B, Hazıroğlu R, Tel OY, Cantekin Z. (2006) Vaccination studies of lambs against experimental Manheimia (Pasteurella) haemolytica infection. Small Rum Res. 65, 44-50.
  • Alhaj M. (2016) Safety and efficacy profile of commercial veterinary vaccines against Rift Valley fever: a review study. J Immunol Res. 2016, 1-7.
  • Arda M, Sareyyüpoğlu B. (2004) Aşılar, Hazırlama Teknikleri, Avantaj ve Dezavantajları. First edition. Ankara: İnkansa Publication, p.26-29.
  • Arda M. (2011) Temel Mikrobiyoloji. Fourth edition. Ankara: Medisan yayınevi, p.459-468.
  • Baron MD, Iqbal M, Nair V. (2018) Recent advances in viral vectors in veterinary vaccinology. Curr Opin Virol. 29, 1-7.
  • Bhatt M, Mohapatra JK, Pandey LK, Mohanty NN, Das B, Prusty BR, Pattnaik B. (2018) Mutational analysis of foot and mouth disease virus nonstructural polyprotein 3AB-coding region to design a negative marker virus. Virus Res. 243, 36-43.
  • Blome S, Moß C, Reimann I, Könıg P, Beer M. (2017a) Classical swine fever vaccines-State-of-the-art. Vet Microbiol. 206, 10-20.
  • Blome S, Wernike K, Reimann I, König P, Moß C, Beer M. (2017b) A decade of research into classical swine fever marker vaccine CP7_E2alf (Suvaxyn® CSF Marker): a review of vaccine properties. Vet Res. 48, 1-10.
  • Capua I, Terregino C, Cattoli G, Mutinelli F, Rodriguez JF. (2003) Development of a DIVA (Differentiating Infected from Vaccinated Animals) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza. Avian Pathol. 32, 47-55.
  • Chaudhuri P, Saminathan M, Ali SA, Kaur G, Singh SV, Lalsiamthara J, Goswami TK, Singh AK, Singh SK, Malik, Singh RK. (2021) Immunization with Brucella abortus S19Δper Conferred Protection in Water Buffaloes against Virulent Challenge with B. abortus Strain S544. Vaccines. 9(12), 1423.
  • Conlan AJ, Pollock EB, McKinley TJ, Mitchell AP, Jones GJ, Vordermeier M, Wood JL. (2015) Potential benefits of cattle vaccination as a supplementary control for bovine tuberculosis. PLoS Comput Biol. 11, e1004038.
  • Day MJ, Schultz RD. (2014) Veterinary Immunology – Principles and Practice. Second edition. Florida: CRC Press, p. 235-240,
  • Dhama K, Datta M, Jain JN, Chaubey K. (2016) DIVA technology: indispensable tool for the control of Johne’s disease. J Exp Biol. 4, 16-25.
  • Diaz-San Segundo F, Medina GN, Stenfeldt C, Arzt J, de Los Santos T. (2017) Foot-and-mouth disease vaccines. Vet Microbiol. 206, 102-112.
  • Dong XN, Chen YH. (2007) Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine. 25, 205-230.
  • Faburay B, Labeaud AD, McVey DS, Wilson WC, Richt JA. (2017) Current status of Rift Valley Fever vaccine development. Vaccine. 5(3), 29.
  • Fakri FZ, Bamouh Z, Elmejdoub S, Elkarhat Z, Tadlaoui K, Chen W, Bu Z, Elharrak M. (2021) Long term immunity against Peste Des Petits Ruminants mediated by a recombinant Newcastle disease virus vaccine. Vet Microbiol. 261, 109201.
  • Francis MJ. (2017) Recent Advances in Vaccine Technologies. Vet Clin North Am Small Anim Pract. 48, 231-241.
  • Freuling CM, Müller TF, Mettenleiter TC. (2017) Vaccines against pseudorabies virus (PrV). Vet Microbiol. 206, 3-9.
  • Ganguly S, Padhy A, Para PA, Pandey AK, Praveen PK, Wakchaure R, Sahu A. (2015) DIVA Vaccines: A Brief Review on its Novel Facets for the Eradication of Infections of Livestock and Poultry. World J Clin Pharmacol Microbiol Toxicol. 1, 22-23.
  • García EA, Blanco FC, Muñiz XF, Eirin ME, Klepp LI, Bigi F. (2020) Elimination of ESAT-6 and CFP-10 from a candidate vaccine against bovine tuberculosis impaired its protection efficacy in the BALBc mouse model. Int J Mycobacteriol. 9(4), 417.
  • Guo R, Jiao Y, Li Z, Zhu S, Fei X, Geng S, Jiao X. (2017) Safety, protective immunity, and DIVA capability of a rough mutant Salmonella Pullorum vaccine candidate in broilers. Front Microbiol. 8, 547-557.
  • Henderson LM. (2005) Overview of marker vaccine and differential diagnostic test technology. Biologicals. 33, 203-209.
  • Herrero-Gil A, Carrión J, Orden JA, De La Fuente R, Domínguez-Bernal G. (2016) Engineering of a live Salmonella enterica serovar Choleraesuis negative-marker strain that allows serological differentiation between immunised and infected animals. The Vet J. 213, 53-58.
  • Holzer B, Taylor G, Rajko-Nenow P, Hodgson S, Okoth E, Herbert R, Baron MD. (2016) Determination of the minimum fully protective dose of adenovirus-based DIVA vaccine against peste des petits ruminants virus challenge in East African goats. Vet Res. 47, 20-26.
  • Lalsiamthara J, Gogia N, Goswami TK, Singh RK, Chaudhuri P. (2015) Intermediate rough Brucella abortus S19Δper mutant is DIVA enable, safe to pregnant guinea pigs and confers protection to mice. Vaccine. 33, 2577-2583.
  • Lee CW, Senne DA, Suarez DL. (2004) Generation of reassortant influenza vaccines by reverse genetics that allows utilization of a DIVA (Differentiating Infected from Vaccinated Animals) strategy for the control of avian influenza. Vaccine. 22, 3175-3181.
  • Liu F, Wu X, Li L, Ge S, Liu Z, Wang Z. (2013) Virus-like particles: promising platforms with characteristics of DIVA for veterinary vaccine design. Comp Immunol Microbiol Infect Dis. 36, 343-352.
  • Meeusen EN, Walker J, Peters A, Pastoret PP, Jungersen G. (2007) Current status of veterinary vaccines. Clin Microbiol Rev. 20, 489-510.
  • Mettenleiter TC. (2020) Aujeszky’s disease and the development of the marker/DIVA vaccination concept. Pathogens. 9(7), 563.
  • Morgan AJ, Parker S. (2007) Translational Mini‐Review Series on Vaccines: The Edward Jenner Museum and the history of vaccination. Clin Exp Immunol. 147, 389-394.
  • Muratore E, Bertolotti L, Nogarol C, Caruso C, Lucchese L, Iotti B, Rosati S. (2017) Surveillance of Infectious Bovine Rhinotracheitis in marker-vaccinated dairy herds: Application of a recombinant gE ELISA on bulk milk samples. Vet Immunol Immunopathol. 185, 1-6.
  • Owen JA, Punt J, Stranford SA, Jones PP. (2013) Kubby Immunology. Seventh edition. New York: W. H. Freeman and Company, p. 574-582.
  • Parida S, Muniraju M, Mahapatra M, Muthuchelvan D, Buczkowski H, Banyard AC. (2015) Peste des petits ruminants. Vet Microbiol. 181, 90-106.
  • Park JK, Lee DH, Yuk SS, Tseren-Ochir EO, Kwon JH, Noh JY, Park SY. (2014) Virus-like particle vaccine confers protection against a lethal newcastle disease virus challenge in chickens and allows a strategy of differentiating infected from vaccinated animals. Clin Vaccine Immunol. 21, 360-365.
  • Pasick J. (2004) Application of DIVA vaccines and their companion diagnostic tests to foreign animal disease eradication. Anim Health Res Rev. 5, 257-262.
  • Petrini S, Righi C, Iscaro C, Viola G, Gobbi P, Scoccia E, Rossi E, Pellegrini C, De Mia GM. (2020) Evaluation of passive immunity induced by immunisation using two inactivated gE-deleted marker vaccines against Infectious Bovine Rhinotracheitis (IBR) in Calves. Vaccines. 8(1), 14.
  • Sareyyüpoğlu B, İzgür M. (1999) DNA immunizasyonu. Etlik Vet Mikrobiyol Derg. 10, 73-85.
  • Selke M, Meens J, Springer S, Frank R, Gerlach GF. (2007) Immunization of pigs to prevent disease in humans: construction and protective efficacy of a Salmonella enterica serovar Typhimurium live negative-marker vaccine. Infect Immun. 75, 2476-2483.
  • Shil NK, Legione AR, Markham PF, Noormohammadi AH, Devlin JM. (2014) Development and validation of TaqMan real-time polymerase chain reaction assays for the quantitative and differential detection of wild-type infectious laryngotracheitis viruses from a glycoprotein G–deficient candidate vaccine strain. Avian Dis. 59, 7-13.
  • Shil NK, Markham PF, Noormohammadi AH, O'rourke D, Devlin JM. (2012) Development of an enzyme-linked immunosorbent assay to detect chicken serum antibody to glycoprotein G of infectious laryngotracheitis virus. Avian Dis. 56, 509-515.
  • Singh A. (2021) Why not the'marker'or DIVA vaccines for the control of emerging infectious diseases of humans?. Vaccine. 39, 1476-1477.
  • Suarez DL. (2005) Overview of avian influenza DIVA test strategies. Biologicals. 33, 221-226.
  • Sun Z, Wang Q, Li G, Li J, Chen S, Qin T, Ma H, Peng D, Liu X. (2021) Development of an Inactivated H7N9 Subtype Avian Influenza Serological DIVA Vaccine Using the Chimeric HA Epitope Approach. Microbiol Spect. 9, e00687-21.
  • Uttenthal A, Parida S, Rasmussen TB, Paton DJ, Haas B, Dundon WG. (2010) Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza. Expert Rev Vaccines. 9, 73-87.
  • Van Oirschot JT, Kaashoek MJ, Rijsewıjk FAM, Stegeman JA. (1996) The use of marker vaccines in eradication of herpesviruses. J Biotechnol. 44, 75-81.
  • Vilei EM, Frey J. (2010) Detection of Mycoplasma mycoides subsp. mycoides SC in bronchoalveolar lavage fluids of cows based on a TaqMan real-time PCR discriminating wild type strains from an lppQ− mutant vaccine strain used for DIVA-strategies. J Microbiol Methods. 81, 211-218.
  • Vordermeier HM, Jones GJ, Buddle BM, Hewinson RG, Villarreal-Ramos B. (2016a) Bovine tuberculosis in cattle: vaccines, DIVA tests, and host biomarker discovery. Annu Rev Anim Biosci. 4, 87-109.
  • Vordermeier HM, Jones GJ, Buddle BM, Hewinson RG. (2016b) Development of immune-diagnostic reagents to diagnose bovine tuberculosis in cattle. Vet Immunol Immunopathol. 181, 10-14.
  • Wei Q, Liu Y, Zhang G. (2021) Research Progress and Challenges in Vaccine Development against Classical Swine Fever Virus. Viruses. 13(3), 445.
  • Wilson WC, Faburay B, Trujillo JD, Ragan I, Sunwoo SY, Morozov I, Shivanna V, Balogh A, Urbaniak K, McVey DS, Bold D, Gaudreault NN, Schirtzinger EE, Ma W, Richt JA. (2021) Preliminary Evaluation of a Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Providing Full Protection against Heterologous Virulent Challenge in Cattle. Vaccines. 9(7), 748.

DIVA (Differentiating Infected from Vaccinated Animals) Aşı ve Stratejileri

Year 2022, Volume: 33 Issue: 1, 102 - 109, 15.06.2022
https://doi.org/10.35864/evmd.932993

Abstract

Veteriner hekimlik alanında aşılama, hastalıkların önlenmesi ve kontrolünde en etkili yöntemlerden birisidir. Hayvan hastalıklarının kontrolünde mevcut yöntemler başarısız olduğunda, farklı aşı ve stratejiler geliştirilmektedir. Saha suşunda yer alan bir veya daha fazla antijenik epitop veya proteinden yoksun olan DIVA (Differentiating Infected from Vaccinated Animals) aşıları ve beraberinde kullanılan tanı testleri, hastalıkların eradikasyonu ve kontrolünde oldukça etkilidir. Mevcut aşılar, aşılı ve enfekte hayvanların ayrımını sağlayamazken, DIVA aşıları bu alanda önemli yararlar sağlar. Bunun yanında ELISA (Enzyme-Linked ImmunoSorbent Assay) gibi DIVA aşılarıyla birlikte kullanılan serolojik testler, hangi hayvanların enfekte ve hangilerinin aşılı olduğunun ayrımı için kullanılabilir. Bazı hayvan hastalıklarına yönelik DIVA aşı ve stratejileri geliştirilmiş ve diğerleri için de geliştirilmeye devam edilmektedir.
Bu derlemede, DIVA aşı ve stratejilerinin genel özelliklerini, önemini, üretimini, avantajlarını ve bunların çeşitli hayvan hastalıklarında kullanımını açıklamak amaçlanmıştır.

References

  • Akan M, Öncel T, Sareyyüpoğlu B, Hazıroğlu R, Tel OY, Cantekin Z. (2006) Vaccination studies of lambs against experimental Manheimia (Pasteurella) haemolytica infection. Small Rum Res. 65, 44-50.
  • Alhaj M. (2016) Safety and efficacy profile of commercial veterinary vaccines against Rift Valley fever: a review study. J Immunol Res. 2016, 1-7.
  • Arda M, Sareyyüpoğlu B. (2004) Aşılar, Hazırlama Teknikleri, Avantaj ve Dezavantajları. First edition. Ankara: İnkansa Publication, p.26-29.
  • Arda M. (2011) Temel Mikrobiyoloji. Fourth edition. Ankara: Medisan yayınevi, p.459-468.
  • Baron MD, Iqbal M, Nair V. (2018) Recent advances in viral vectors in veterinary vaccinology. Curr Opin Virol. 29, 1-7.
  • Bhatt M, Mohapatra JK, Pandey LK, Mohanty NN, Das B, Prusty BR, Pattnaik B. (2018) Mutational analysis of foot and mouth disease virus nonstructural polyprotein 3AB-coding region to design a negative marker virus. Virus Res. 243, 36-43.
  • Blome S, Moß C, Reimann I, Könıg P, Beer M. (2017a) Classical swine fever vaccines-State-of-the-art. Vet Microbiol. 206, 10-20.
  • Blome S, Wernike K, Reimann I, König P, Moß C, Beer M. (2017b) A decade of research into classical swine fever marker vaccine CP7_E2alf (Suvaxyn® CSF Marker): a review of vaccine properties. Vet Res. 48, 1-10.
  • Capua I, Terregino C, Cattoli G, Mutinelli F, Rodriguez JF. (2003) Development of a DIVA (Differentiating Infected from Vaccinated Animals) strategy using a vaccine containing a heterologous neuraminidase for the control of avian influenza. Avian Pathol. 32, 47-55.
  • Chaudhuri P, Saminathan M, Ali SA, Kaur G, Singh SV, Lalsiamthara J, Goswami TK, Singh AK, Singh SK, Malik, Singh RK. (2021) Immunization with Brucella abortus S19Δper Conferred Protection in Water Buffaloes against Virulent Challenge with B. abortus Strain S544. Vaccines. 9(12), 1423.
  • Conlan AJ, Pollock EB, McKinley TJ, Mitchell AP, Jones GJ, Vordermeier M, Wood JL. (2015) Potential benefits of cattle vaccination as a supplementary control for bovine tuberculosis. PLoS Comput Biol. 11, e1004038.
  • Day MJ, Schultz RD. (2014) Veterinary Immunology – Principles and Practice. Second edition. Florida: CRC Press, p. 235-240,
  • Dhama K, Datta M, Jain JN, Chaubey K. (2016) DIVA technology: indispensable tool for the control of Johne’s disease. J Exp Biol. 4, 16-25.
  • Diaz-San Segundo F, Medina GN, Stenfeldt C, Arzt J, de Los Santos T. (2017) Foot-and-mouth disease vaccines. Vet Microbiol. 206, 102-112.
  • Dong XN, Chen YH. (2007) Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine. 25, 205-230.
  • Faburay B, Labeaud AD, McVey DS, Wilson WC, Richt JA. (2017) Current status of Rift Valley Fever vaccine development. Vaccine. 5(3), 29.
  • Fakri FZ, Bamouh Z, Elmejdoub S, Elkarhat Z, Tadlaoui K, Chen W, Bu Z, Elharrak M. (2021) Long term immunity against Peste Des Petits Ruminants mediated by a recombinant Newcastle disease virus vaccine. Vet Microbiol. 261, 109201.
  • Francis MJ. (2017) Recent Advances in Vaccine Technologies. Vet Clin North Am Small Anim Pract. 48, 231-241.
  • Freuling CM, Müller TF, Mettenleiter TC. (2017) Vaccines against pseudorabies virus (PrV). Vet Microbiol. 206, 3-9.
  • Ganguly S, Padhy A, Para PA, Pandey AK, Praveen PK, Wakchaure R, Sahu A. (2015) DIVA Vaccines: A Brief Review on its Novel Facets for the Eradication of Infections of Livestock and Poultry. World J Clin Pharmacol Microbiol Toxicol. 1, 22-23.
  • García EA, Blanco FC, Muñiz XF, Eirin ME, Klepp LI, Bigi F. (2020) Elimination of ESAT-6 and CFP-10 from a candidate vaccine against bovine tuberculosis impaired its protection efficacy in the BALBc mouse model. Int J Mycobacteriol. 9(4), 417.
  • Guo R, Jiao Y, Li Z, Zhu S, Fei X, Geng S, Jiao X. (2017) Safety, protective immunity, and DIVA capability of a rough mutant Salmonella Pullorum vaccine candidate in broilers. Front Microbiol. 8, 547-557.
  • Henderson LM. (2005) Overview of marker vaccine and differential diagnostic test technology. Biologicals. 33, 203-209.
  • Herrero-Gil A, Carrión J, Orden JA, De La Fuente R, Domínguez-Bernal G. (2016) Engineering of a live Salmonella enterica serovar Choleraesuis negative-marker strain that allows serological differentiation between immunised and infected animals. The Vet J. 213, 53-58.
  • Holzer B, Taylor G, Rajko-Nenow P, Hodgson S, Okoth E, Herbert R, Baron MD. (2016) Determination of the minimum fully protective dose of adenovirus-based DIVA vaccine against peste des petits ruminants virus challenge in East African goats. Vet Res. 47, 20-26.
  • Lalsiamthara J, Gogia N, Goswami TK, Singh RK, Chaudhuri P. (2015) Intermediate rough Brucella abortus S19Δper mutant is DIVA enable, safe to pregnant guinea pigs and confers protection to mice. Vaccine. 33, 2577-2583.
  • Lee CW, Senne DA, Suarez DL. (2004) Generation of reassortant influenza vaccines by reverse genetics that allows utilization of a DIVA (Differentiating Infected from Vaccinated Animals) strategy for the control of avian influenza. Vaccine. 22, 3175-3181.
  • Liu F, Wu X, Li L, Ge S, Liu Z, Wang Z. (2013) Virus-like particles: promising platforms with characteristics of DIVA for veterinary vaccine design. Comp Immunol Microbiol Infect Dis. 36, 343-352.
  • Meeusen EN, Walker J, Peters A, Pastoret PP, Jungersen G. (2007) Current status of veterinary vaccines. Clin Microbiol Rev. 20, 489-510.
  • Mettenleiter TC. (2020) Aujeszky’s disease and the development of the marker/DIVA vaccination concept. Pathogens. 9(7), 563.
  • Morgan AJ, Parker S. (2007) Translational Mini‐Review Series on Vaccines: The Edward Jenner Museum and the history of vaccination. Clin Exp Immunol. 147, 389-394.
  • Muratore E, Bertolotti L, Nogarol C, Caruso C, Lucchese L, Iotti B, Rosati S. (2017) Surveillance of Infectious Bovine Rhinotracheitis in marker-vaccinated dairy herds: Application of a recombinant gE ELISA on bulk milk samples. Vet Immunol Immunopathol. 185, 1-6.
  • Owen JA, Punt J, Stranford SA, Jones PP. (2013) Kubby Immunology. Seventh edition. New York: W. H. Freeman and Company, p. 574-582.
  • Parida S, Muniraju M, Mahapatra M, Muthuchelvan D, Buczkowski H, Banyard AC. (2015) Peste des petits ruminants. Vet Microbiol. 181, 90-106.
  • Park JK, Lee DH, Yuk SS, Tseren-Ochir EO, Kwon JH, Noh JY, Park SY. (2014) Virus-like particle vaccine confers protection against a lethal newcastle disease virus challenge in chickens and allows a strategy of differentiating infected from vaccinated animals. Clin Vaccine Immunol. 21, 360-365.
  • Pasick J. (2004) Application of DIVA vaccines and their companion diagnostic tests to foreign animal disease eradication. Anim Health Res Rev. 5, 257-262.
  • Petrini S, Righi C, Iscaro C, Viola G, Gobbi P, Scoccia E, Rossi E, Pellegrini C, De Mia GM. (2020) Evaluation of passive immunity induced by immunisation using two inactivated gE-deleted marker vaccines against Infectious Bovine Rhinotracheitis (IBR) in Calves. Vaccines. 8(1), 14.
  • Sareyyüpoğlu B, İzgür M. (1999) DNA immunizasyonu. Etlik Vet Mikrobiyol Derg. 10, 73-85.
  • Selke M, Meens J, Springer S, Frank R, Gerlach GF. (2007) Immunization of pigs to prevent disease in humans: construction and protective efficacy of a Salmonella enterica serovar Typhimurium live negative-marker vaccine. Infect Immun. 75, 2476-2483.
  • Shil NK, Legione AR, Markham PF, Noormohammadi AH, Devlin JM. (2014) Development and validation of TaqMan real-time polymerase chain reaction assays for the quantitative and differential detection of wild-type infectious laryngotracheitis viruses from a glycoprotein G–deficient candidate vaccine strain. Avian Dis. 59, 7-13.
  • Shil NK, Markham PF, Noormohammadi AH, O'rourke D, Devlin JM. (2012) Development of an enzyme-linked immunosorbent assay to detect chicken serum antibody to glycoprotein G of infectious laryngotracheitis virus. Avian Dis. 56, 509-515.
  • Singh A. (2021) Why not the'marker'or DIVA vaccines for the control of emerging infectious diseases of humans?. Vaccine. 39, 1476-1477.
  • Suarez DL. (2005) Overview of avian influenza DIVA test strategies. Biologicals. 33, 221-226.
  • Sun Z, Wang Q, Li G, Li J, Chen S, Qin T, Ma H, Peng D, Liu X. (2021) Development of an Inactivated H7N9 Subtype Avian Influenza Serological DIVA Vaccine Using the Chimeric HA Epitope Approach. Microbiol Spect. 9, e00687-21.
  • Uttenthal A, Parida S, Rasmussen TB, Paton DJ, Haas B, Dundon WG. (2010) Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza. Expert Rev Vaccines. 9, 73-87.
  • Van Oirschot JT, Kaashoek MJ, Rijsewıjk FAM, Stegeman JA. (1996) The use of marker vaccines in eradication of herpesviruses. J Biotechnol. 44, 75-81.
  • Vilei EM, Frey J. (2010) Detection of Mycoplasma mycoides subsp. mycoides SC in bronchoalveolar lavage fluids of cows based on a TaqMan real-time PCR discriminating wild type strains from an lppQ− mutant vaccine strain used for DIVA-strategies. J Microbiol Methods. 81, 211-218.
  • Vordermeier HM, Jones GJ, Buddle BM, Hewinson RG, Villarreal-Ramos B. (2016a) Bovine tuberculosis in cattle: vaccines, DIVA tests, and host biomarker discovery. Annu Rev Anim Biosci. 4, 87-109.
  • Vordermeier HM, Jones GJ, Buddle BM, Hewinson RG. (2016b) Development of immune-diagnostic reagents to diagnose bovine tuberculosis in cattle. Vet Immunol Immunopathol. 181, 10-14.
  • Wei Q, Liu Y, Zhang G. (2021) Research Progress and Challenges in Vaccine Development against Classical Swine Fever Virus. Viruses. 13(3), 445.
  • Wilson WC, Faburay B, Trujillo JD, Ragan I, Sunwoo SY, Morozov I, Shivanna V, Balogh A, Urbaniak K, McVey DS, Bold D, Gaudreault NN, Schirtzinger EE, Ma W, Richt JA. (2021) Preliminary Evaluation of a Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Providing Full Protection against Heterologous Virulent Challenge in Cattle. Vaccines. 9(7), 748.
There are 51 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Review
Authors

Asena Esra Erdem 0000-0001-7650-7762

Barış Sareyyüpoğlu 0000-0002-2212-2610

Early Pub Date June 24, 2022
Publication Date June 15, 2022
Submission Date May 5, 2021
Published in Issue Year 2022 Volume: 33 Issue: 1

Cite

APA Erdem, A. E., & Sareyyüpoğlu, B. (2022). DIVA (Differentiating Infected from Vaccinated Animals) Vaccines and Strategies. Etlik Veteriner Mikrobiyoloji Dergisi, 33(1), 102-109. https://doi.org/10.35864/evmd.932993

download