Research Article
BibTex RIS Cite
Year 2025, , 31 - 42, 31.03.2025
https://doi.org/10.33401/fujma.1610936

Abstract

References

  • [1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK, (2004). $\href{https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf}{\mbox{[Web]}} $
  • [2] M.J. Osborne and A. Rubinstein, A Course in Game Theory, MIT Press, Cambridge, MA, USA, (1994). $ \href{https://sites.math.rutgers.edu/~zeilberg/EM20/OsborneRubinsteinMasterpiece.pdf}{\mbox{[Web]}} $
  • [3] R.T. Rockafellar and R.J.B.Wets, Variational Analysis, Springer Science & Business Media, Berlin/Heidelberg, Germany, 317(2009). $ \href{https://sites.math.washington.edu/~rtr/papers/rtr169-VarAnalysis-RockWets.pdf}{\mbox{[Web]}} $
  • [4] J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier d’une fonction considree par Riemann, J. Math. Pures. et Appl., 58(1893), 171-215.
  • [5] H. Budak, T. Tunç and M.Z. Sarıkaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148(2) (2020), 705-718. $ \href{https://doi.org/10.1186/s13660-019-2217-1}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85073568146&origin=resultslist&sort=plf-f&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE%28%22Fractional+Hermite-Hadamard-type+inequalities+for+interval-valued+functions%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000515135200024}{\mbox{[Web of Science]}} $
  • [6] S.S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91-95. $\href{https://doi.org/10.1016/S0893-9659(98)00086-X}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0002448458&origin=resultslist&sort=plf-f&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE%28%22Two+inequalities+for+differentiable+mappings+and+applications+to+special+means+of+real+numbers+and+to+trapezoidal+formula%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000075622100017}{\mbox{[Web of Science]}} $
  • [7] U.S. Kırmacı, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147(5) (2004), 137-146. $ \href{https://doi.org/10.1016/S0096-3003(02)00657-4}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0141525042&origin=resultslist&sort=plf-f&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE%28%22Inequalities+for+differentiable+mappings+and+applications+to+special+means+of+real+numbers+and+to+midpoint+formula%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000185952900012}{\mbox{[Web of Science]}} $
  • [8] M. Alomari and Z. Liu, New error estimations for the Milne’s quadrature formula in terms of at most first derivatives, Konuralp J. Math., 1(1) (2013), 17-23. $ \href{https://dergipark.org.tr/en/pub/konuralpjournalmath/issue/27676/291702}{\mbox{[Web]}} $
  • [9] H. Rom an-Flores, V. Ayala and A. Flores-Franulic, Milne type inequality and interval orders, Comput. Appl. Math., 40(4) (2021), 1-15. $ \href{https://doi.org/10.1007/s40314-021-01500-y}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85105232938&origin=resultslist&sort=plf-f&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22Milne+type+inequality+and+interval+orders%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=9}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000757207200001}{\mbox{[Web of Science]}} $
  • [10] M. Djenaoui and B. Meftah, Milne type inequalities for differentiable s-convex functions, Honam Math. J., 44(3) (2022), 325-338. $\href{https://doi.org/10.5831/HMJ.2022.44.3.325}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000890292100002}{\mbox{[Web of Science]}} $
  • [11] M. Umar, S.I. Butt and Y. Seol, Milne and Hermite-Hadamard’s type inequalities for strongly multiplicative convex function via multiplicative calculus, AIMS Math., 9(12) (2024), 34090-34108. $ \href{https://doi.org/10.3934/math.20241625}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85211587711&origin=resultslist&sort=plf-f&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22Milne+and+Hermite-Hadamard%27s+type+inequalities+for+strongly+multiplicative+convex+function+via+multiplicative+calculus%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001407413300006}{\mbox{[Web of Science]}} $
  • [12] A. Gabr, A.H. Abdel Kader and M.S. Abdel Latif, The effect of the parameters of the generalized fractional derivatives on the behavior of linear electrical circuits, Int. J. Appl. Comput. Math., 7(6) (2021), 1-14. $ \href{https://doi.org/10.1007/s40819-021-01160-w}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85119456318&origin=resultslist&sort=plf-f&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22The+Effect+of+the+Parameters+of+the+Generalized+Fractional+Derivatives+On+the+Behavior+of+Linear+Electrical+Circuits%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=10}{\mbox{[Scopus]}} $
  • [13] N. Iqbal, A. Akgül, R. Shah, A. Bariq, M.M. Al-Sawalha and A. Ali, On solutions of fractional-order gas dynamics equation by effective techniques, J. Funct. Spaces, 2022(1) (2022), 3341754, 1-14. $ \href{https://doi.org/10.1155/2022/3341754}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85127601999&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=sisr&s=ALL%28%22On+Solutions+of+Fractional-Order+Gas+Dynamics+Equation+by+Effective+Techniques%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=22}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000790448700001}{\mbox{[Web of Science]}}$
  • [14] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Sci. B.V., Amsterdam, (2006). $ \href{http://dx.doi.org/10.1016/S0304-0208(06)80001-0}{\mbox{[CrossRef]}} $
  • [15] P. Bosch, J.M. Rodriguez and J.M. Sigarreta, On new Milne-type inequalities and applications, J. Inequal. Appl., 2023(1) (2023). $ \href{https://doi.org/10.1186/s13660-022-02910-0}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85145722259&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=a&s=ALL%28%22On+new+Milne-type+inequalities+and+applications%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=2}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000909484700001}{\mbox{[Web of Science]}} $
  • [16] W. Haider, H. Budak and A. Shehzadi, Fractional Milne-type inequalities for twice differentiable functions for Riemann-Liouville fractional integrals, Anal. Math. Phys., 14(6) (2024), 118. $\href{https://doi.org/10.1007/s13324-024-00980-5}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85206653206&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22Fractional+Milne-type+inequalities+for+twice+differentiable+functions+for+Riemann-Liouville+fractional+integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001335600000001}{\mbox{[Web of Science]}} $
  • [17] H.D. Desta, H. Budak and H. Kara, New perspectives on fractional Milne-type inequalities: insights from twice-differentiable functions, Univ. J. Math. Appl., 7(1) (2024), 30-37. $\href{https://doi.org/10.32323/ujma.1397051}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85188334711&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22New+perspectives+on+fractional+Milne-type+inequalities%3A+insights+from+twice-differentiable+functions%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=3}{\mbox{[Scopus]}} $
  • [18] H. Budak, P. Kösem and H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., 2023(1) (2023). $ \href{https://doi.org/10.1186/s13660-023-02921-5}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85146533305&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22On+new+Milne-type+inequalities+for+fractional+integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=2}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000917172000003}{\mbox{[Web of Science]}} $
  • [19] A.A. Almoneef, A.A. Hyder, H. Budak and M. A. Barakat, Fractional Milne-type inequalities for twice differentiable functions, AIMS Math., 9(7) (2024), 19771-19785. $ \href{https://doi.org/10.1007/s13324-024-00980-5}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85196113124&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22Fractional+Milne-type+inequalities+for+twice+differentiable+functions%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001249078500004}{\mbox{[Web of Science]}} $
  • [20] A.A. Hyder and A.H. Soliman, A new generalized q-conformable calculus and its applications in mathematical physics, Phys. Scr. 96(1) (2020), 15208. $\href{http://dx.doi.org/10.1088/1402-4896/abc6d9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85096538146&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22A+new+generalized+%24%5Ctheta%24-conformable+calculus+and+its+applications+in+mathematical+physics%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000588257500001}{\mbox{[Web of Science]}} $
  • [21] D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54(3) (2017), 903-917. $ \href{https://www.do.org/10.1007/s10092-017-0213-8}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85009170962&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22General+conformable+fractional+derivative+and+its+physical+interpretation%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000410163200012}{\mbox{[Web of Science]}} $
  • [22] F. Jarad, E. Uğurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017(247) (2017), 1-16. $ \href{https://doi.org/10.1186/s13662-017-1306-z}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85028006940&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22On+a+new+class+of+fractional+operators%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000408335400002}{\mbox{[Web of Science]}} $
  • [23] E. Set, J. Choi and A. Gözpinar, Hermite-Hadamard type inequalities involving nonlocal conformable fractional integrals, Malays. J. Math. Sci, 15(1) (2021), 33-43. $ \href{https://doi.org/10.15672/hujms.946069}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85102836678&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22Hermite-Hadamard+type+inequalities+involving+nonlocal+conformable+fractional+integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000653176100003}{\mbox{[Web of Science]}} $
  • [24] F. Hezenci, H. Kara and H. Budak, Conformable fractional versions of Hermite-Hadamard-type inequalities for twice-differentiable functions, Bound. Value Probl., 2023(1) (2023), 48. $ \href{https://doi.org/10.1186/s13661-023-01737-y}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85154051277&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22Conformable+fractional+versions+of+Hermite-Hadamard-type+inequalities+for+twice-differentiable+functions%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=2}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000975998500001}{\mbox{[Web of Science]}} $
  • [25] R. Ying, A. Lakhdari, H. Xu, W. Saleh and B. Meftah, On conformable fractional Milne-type inequalities, Symmetry, 16(2) (2024), 196. $ \href{https://doi.org/10.3390/sym16020196}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85187256853&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE-ABS-KEY%28%22On+Conformable+Fractional+Milne-Type+Inequalities%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001172640500001}{\mbox{[Web of Science]}} $
  • [26] F. Hezenci and H. Budak, Novel results on trapezoid-type inequalities for conformable fractional integrals, Turkish J. Math., 47(2)(2023), 425-438. $\href{https://doi.org/10.55730/1300-0098.3371}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85152013473&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE-ABS-KEY%28%22Novel+results+on+trapezoid-type+inequalities+for+conformable+fractional+integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000986888900007}{\mbox{[Web of Science]}} $
  • [27] F. Hezenci and H. Budak, Bullen-type inequalities for twice-differentiable functions by using conformable fractional integrals, J. Inequal. Appl., 2024(1) (2024), 45.$ \href{https://doi.org/10.1186/s13660-024-03130-4}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85189144080&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE-ABS-KEY%28%22Bullen-type+inequalities+for+twice-differentiable+functions+by+using+conformable+fractional+integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001197235000001}{\mbox{[Web of Science]}} $
  • [28] B. Çelik, H. Budak and E. Set, On generalized Milne type inequalities for new conformable fractional integrals, Filomat, 38(5) (2024), 1807-1823. $ \href{https://doi.org/10.2298/FIL2405807C}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85187879648&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE-ABS-KEY%28%22On+generalized+Milne+type+inequalities+for+new+conformable+fractional+integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001126593200001}{\mbox{[Web of Science]}} $
  • [29] F. Hezenci, H. Kara and H. Budak, Inequalities of Simpson-type for twice-differentiable convex functions via conformable fractional integrals, Int. J. Nonlinear Anal. Appl., 15(3) (2024), 1-10. $ \href{https://doi.org/10.22075/ijnaa.2023.28568.3928}{\mbox{[CrossRef]}} $
  • [30] F. Hezenci and H. Budak, On error bounds for Milne’s formula in conformable fractional operators, Ukrainian Math. J., 76(7) (2024), 1214-1232. $ \href{https://doi.org/10.1007/s11253-024-02382-z}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85210600393&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE-ABS-KEY%28%22On+Error+Bounds+for+Milne%27s+Formula+in+Conformable+Fractional+Operators%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001366652700001}{\mbox{[Web of Science]}} $
  • [31] F. Hezenci, M. Vivas-Cortez and H. Budak, Remarks on inequalities with parameter by conformable fractional integrals, Fractals, 2024 (2024), 2450137. $ \href{https://doi.org/10.1142/S0218348X24501378}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85207936409&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE-ABS-KEY%28%22Remarks+on+Inequalities+with+Parameter+by+Conformable+Fractional+Integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001347079600001}{\mbox{[Web of Science]}} $
  • [32] H. Budak, H. Kara and H. ¨O˘g¨unmez, On fractional inequalities of the Milne-type, Submitted.

Conformable Fractional Milne-Type Inequalities Through Twice-Differentiable Convex Functions

Year 2025, , 31 - 42, 31.03.2025
https://doi.org/10.33401/fujma.1610936

Abstract

In this article, we present a new integral identity based on conformable fractional integral operators with the help of twice-differentiable functions. Then, using this newly derived identity, we propose several Milne-type inequalities for twice-differentiable convex functions by means of conformable fractional integral operators and offer an example with an associated graph. Also, we note that the obtained results improve and expand some of the previous discoveries in the field of integral inequalities. Moreover, along with expanding on previous results, our results suggest effective approaches and methods for dealing with a variety of mathematical and scientific issues.

References

  • [1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK, (2004). $\href{https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf}{\mbox{[Web]}} $
  • [2] M.J. Osborne and A. Rubinstein, A Course in Game Theory, MIT Press, Cambridge, MA, USA, (1994). $ \href{https://sites.math.rutgers.edu/~zeilberg/EM20/OsborneRubinsteinMasterpiece.pdf}{\mbox{[Web]}} $
  • [3] R.T. Rockafellar and R.J.B.Wets, Variational Analysis, Springer Science & Business Media, Berlin/Heidelberg, Germany, 317(2009). $ \href{https://sites.math.washington.edu/~rtr/papers/rtr169-VarAnalysis-RockWets.pdf}{\mbox{[Web]}} $
  • [4] J. Hadamard, Etude sur les proprietes des fonctions entieres et en particulier d’une fonction considree par Riemann, J. Math. Pures. et Appl., 58(1893), 171-215.
  • [5] H. Budak, T. Tunç and M.Z. Sarıkaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148(2) (2020), 705-718. $ \href{https://doi.org/10.1186/s13660-019-2217-1}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85073568146&origin=resultslist&sort=plf-f&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE%28%22Fractional+Hermite-Hadamard-type+inequalities+for+interval-valued+functions%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000515135200024}{\mbox{[Web of Science]}} $
  • [6] S.S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91-95. $\href{https://doi.org/10.1016/S0893-9659(98)00086-X}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0002448458&origin=resultslist&sort=plf-f&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE%28%22Two+inequalities+for+differentiable+mappings+and+applications+to+special+means+of+real+numbers+and+to+trapezoidal+formula%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000075622100017}{\mbox{[Web of Science]}} $
  • [7] U.S. Kırmacı, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147(5) (2004), 137-146. $ \href{https://doi.org/10.1016/S0096-3003(02)00657-4}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-0141525042&origin=resultslist&sort=plf-f&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE%28%22Inequalities+for+differentiable+mappings+and+applications+to+special+means+of+real+numbers+and+to+midpoint+formula%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000185952900012}{\mbox{[Web of Science]}} $
  • [8] M. Alomari and Z. Liu, New error estimations for the Milne’s quadrature formula in terms of at most first derivatives, Konuralp J. Math., 1(1) (2013), 17-23. $ \href{https://dergipark.org.tr/en/pub/konuralpjournalmath/issue/27676/291702}{\mbox{[Web]}} $
  • [9] H. Rom an-Flores, V. Ayala and A. Flores-Franulic, Milne type inequality and interval orders, Comput. Appl. Math., 40(4) (2021), 1-15. $ \href{https://doi.org/10.1007/s40314-021-01500-y}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85105232938&origin=resultslist&sort=plf-f&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22Milne+type+inequality+and+interval+orders%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=9}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000757207200001}{\mbox{[Web of Science]}} $
  • [10] M. Djenaoui and B. Meftah, Milne type inequalities for differentiable s-convex functions, Honam Math. J., 44(3) (2022), 325-338. $\href{https://doi.org/10.5831/HMJ.2022.44.3.325}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000890292100002}{\mbox{[Web of Science]}} $
  • [11] M. Umar, S.I. Butt and Y. Seol, Milne and Hermite-Hadamard’s type inequalities for strongly multiplicative convex function via multiplicative calculus, AIMS Math., 9(12) (2024), 34090-34108. $ \href{https://doi.org/10.3934/math.20241625}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85211587711&origin=resultslist&sort=plf-f&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22Milne+and+Hermite-Hadamard%27s+type+inequalities+for+strongly+multiplicative+convex+function+via+multiplicative+calculus%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001407413300006}{\mbox{[Web of Science]}} $
  • [12] A. Gabr, A.H. Abdel Kader and M.S. Abdel Latif, The effect of the parameters of the generalized fractional derivatives on the behavior of linear electrical circuits, Int. J. Appl. Comput. Math., 7(6) (2021), 1-14. $ \href{https://doi.org/10.1007/s40819-021-01160-w}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85119456318&origin=resultslist&sort=plf-f&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22The+Effect+of+the+Parameters+of+the+Generalized+Fractional+Derivatives+On+the+Behavior+of+Linear+Electrical+Circuits%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=10}{\mbox{[Scopus]}} $
  • [13] N. Iqbal, A. Akgül, R. Shah, A. Bariq, M.M. Al-Sawalha and A. Ali, On solutions of fractional-order gas dynamics equation by effective techniques, J. Funct. Spaces, 2022(1) (2022), 3341754, 1-14. $ \href{https://doi.org/10.1155/2022/3341754}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85127601999&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=sisr&s=ALL%28%22On+Solutions+of+Fractional-Order+Gas+Dynamics+Equation+by+Effective+Techniques%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=22}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000790448700001}{\mbox{[Web of Science]}}$
  • [14] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Sci. B.V., Amsterdam, (2006). $ \href{http://dx.doi.org/10.1016/S0304-0208(06)80001-0}{\mbox{[CrossRef]}} $
  • [15] P. Bosch, J.M. Rodriguez and J.M. Sigarreta, On new Milne-type inequalities and applications, J. Inequal. Appl., 2023(1) (2023). $ \href{https://doi.org/10.1186/s13660-022-02910-0}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85145722259&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=a&s=ALL%28%22On+new+Milne-type+inequalities+and+applications%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=2}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000909484700001}{\mbox{[Web of Science]}} $
  • [16] W. Haider, H. Budak and A. Shehzadi, Fractional Milne-type inequalities for twice differentiable functions for Riemann-Liouville fractional integrals, Anal. Math. Phys., 14(6) (2024), 118. $\href{https://doi.org/10.1007/s13324-024-00980-5}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85206653206&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22Fractional+Milne-type+inequalities+for+twice+differentiable+functions+for+Riemann-Liouville+fractional+integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001335600000001}{\mbox{[Web of Science]}} $
  • [17] H.D. Desta, H. Budak and H. Kara, New perspectives on fractional Milne-type inequalities: insights from twice-differentiable functions, Univ. J. Math. Appl., 7(1) (2024), 30-37. $\href{https://doi.org/10.32323/ujma.1397051}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85188334711&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22New+perspectives+on+fractional+Milne-type+inequalities%3A+insights+from+twice-differentiable+functions%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=3}{\mbox{[Scopus]}} $
  • [18] H. Budak, P. Kösem and H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., 2023(1) (2023). $ \href{https://doi.org/10.1186/s13660-023-02921-5}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85146533305&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22On+new+Milne-type+inequalities+for+fractional+integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=2}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000917172000003}{\mbox{[Web of Science]}} $
  • [19] A.A. Almoneef, A.A. Hyder, H. Budak and M. A. Barakat, Fractional Milne-type inequalities for twice differentiable functions, AIMS Math., 9(7) (2024), 19771-19785. $ \href{https://doi.org/10.1007/s13324-024-00980-5}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85196113124&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22Fractional+Milne-type+inequalities+for+twice+differentiable+functions%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001249078500004}{\mbox{[Web of Science]}} $
  • [20] A.A. Hyder and A.H. Soliman, A new generalized q-conformable calculus and its applications in mathematical physics, Phys. Scr. 96(1) (2020), 15208. $\href{http://dx.doi.org/10.1088/1402-4896/abc6d9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85096538146&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22A+new+generalized+%24%5Ctheta%24-conformable+calculus+and+its+applications+in+mathematical+physics%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000588257500001}{\mbox{[Web of Science]}} $
  • [21] D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54(3) (2017), 903-917. $ \href{https://www.do.org/10.1007/s10092-017-0213-8}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85009170962&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22General+conformable+fractional+derivative+and+its+physical+interpretation%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=1}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000410163200012}{\mbox{[Web of Science]}} $
  • [22] F. Jarad, E. Uğurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017(247) (2017), 1-16. $ \href{https://doi.org/10.1186/s13662-017-1306-z}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85028006940&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22On+a+new+class+of+fractional+operators%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000408335400002}{\mbox{[Web of Science]}} $
  • [23] E. Set, J. Choi and A. Gözpinar, Hermite-Hadamard type inequalities involving nonlocal conformable fractional integrals, Malays. J. Math. Sci, 15(1) (2021), 33-43. $ \href{https://doi.org/10.15672/hujms.946069}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85102836678&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22Hermite-Hadamard+type+inequalities+involving+nonlocal+conformable+fractional+integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000653176100003}{\mbox{[Web of Science]}} $
  • [24] F. Hezenci, H. Kara and H. Budak, Conformable fractional versions of Hermite-Hadamard-type inequalities for twice-differentiable functions, Bound. Value Probl., 2023(1) (2023), 48. $ \href{https://doi.org/10.1186/s13661-023-01737-y}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85154051277&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=ALL%28%22Conformable+fractional+versions+of+Hermite-Hadamard-type+inequalities+for+twice-differentiable+functions%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139&relpos=2}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000975998500001}{\mbox{[Web of Science]}} $
  • [25] R. Ying, A. Lakhdari, H. Xu, W. Saleh and B. Meftah, On conformable fractional Milne-type inequalities, Symmetry, 16(2) (2024), 196. $ \href{https://doi.org/10.3390/sym16020196}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85187256853&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE-ABS-KEY%28%22On+Conformable+Fractional+Milne-Type+Inequalities%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001172640500001}{\mbox{[Web of Science]}} $
  • [26] F. Hezenci and H. Budak, Novel results on trapezoid-type inequalities for conformable fractional integrals, Turkish J. Math., 47(2)(2023), 425-438. $\href{https://doi.org/10.55730/1300-0098.3371}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85152013473&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE-ABS-KEY%28%22Novel+results+on+trapezoid-type+inequalities+for+conformable+fractional+integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000986888900007}{\mbox{[Web of Science]}} $
  • [27] F. Hezenci and H. Budak, Bullen-type inequalities for twice-differentiable functions by using conformable fractional integrals, J. Inequal. Appl., 2024(1) (2024), 45.$ \href{https://doi.org/10.1186/s13660-024-03130-4}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85189144080&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE-ABS-KEY%28%22Bullen-type+inequalities+for+twice-differentiable+functions+by+using+conformable+fractional+integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001197235000001}{\mbox{[Web of Science]}} $
  • [28] B. Çelik, H. Budak and E. Set, On generalized Milne type inequalities for new conformable fractional integrals, Filomat, 38(5) (2024), 1807-1823. $ \href{https://doi.org/10.2298/FIL2405807C}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85187879648&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE-ABS-KEY%28%22On+generalized+Milne+type+inequalities+for+new+conformable+fractional+integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001126593200001}{\mbox{[Web of Science]}} $
  • [29] F. Hezenci, H. Kara and H. Budak, Inequalities of Simpson-type for twice-differentiable convex functions via conformable fractional integrals, Int. J. Nonlinear Anal. Appl., 15(3) (2024), 1-10. $ \href{https://doi.org/10.22075/ijnaa.2023.28568.3928}{\mbox{[CrossRef]}} $
  • [30] F. Hezenci and H. Budak, On error bounds for Milne’s formula in conformable fractional operators, Ukrainian Math. J., 76(7) (2024), 1214-1232. $ \href{https://doi.org/10.1007/s11253-024-02382-z}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85210600393&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE-ABS-KEY%28%22On+Error+Bounds+for+Milne%27s+Formula+in+Conformable+Fractional+Operators%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001366652700001}{\mbox{[Web of Science]}} $
  • [31] F. Hezenci, M. Vivas-Cortez and H. Budak, Remarks on inequalities with parameter by conformable fractional integrals, Fractals, 2024 (2024), 2450137. $ \href{https://doi.org/10.1142/S0218348X24501378}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85207936409&origin=resultslist&sort=plf-t&src=s&sid=e090bc4fc46035bb400731a9601b8139&sot=a&sdt=b&s=TITLE-ABS-KEY%28%22Remarks+on+Inequalities+with+Parameter+by+Conformable+Fractional+Integrals%22%29&sl=41&sessionSearchId=e090bc4fc46035bb400731a9601b8139}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001347079600001}{\mbox{[Web of Science]}} $
  • [32] H. Budak, H. Kara and H. ¨O˘g¨unmez, On fractional inequalities of the Milne-type, Submitted.
There are 32 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Articles
Authors

İzzettin Demir 0000-0003-0298-2872

Esra Üneş 0009-0005-8670-6075

Early Pub Date March 28, 2025
Publication Date March 31, 2025
Submission Date January 1, 2025
Acceptance Date March 28, 2025
Published in Issue Year 2025

Cite

APA Demir, İ., & Üneş, E. (2025). Conformable Fractional Milne-Type Inequalities Through Twice-Differentiable Convex Functions. Fundamental Journal of Mathematics and Applications, 8(1), 31-42. https://doi.org/10.33401/fujma.1610936
AMA Demir İ, Üneş E. Conformable Fractional Milne-Type Inequalities Through Twice-Differentiable Convex Functions. Fundam. J. Math. Appl. March 2025;8(1):31-42. doi:10.33401/fujma.1610936
Chicago Demir, İzzettin, and Esra Üneş. “Conformable Fractional Milne-Type Inequalities Through Twice-Differentiable Convex Functions”. Fundamental Journal of Mathematics and Applications 8, no. 1 (March 2025): 31-42. https://doi.org/10.33401/fujma.1610936.
EndNote Demir İ, Üneş E (March 1, 2025) Conformable Fractional Milne-Type Inequalities Through Twice-Differentiable Convex Functions. Fundamental Journal of Mathematics and Applications 8 1 31–42.
IEEE İ. Demir and E. Üneş, “Conformable Fractional Milne-Type Inequalities Through Twice-Differentiable Convex Functions”, Fundam. J. Math. Appl., vol. 8, no. 1, pp. 31–42, 2025, doi: 10.33401/fujma.1610936.
ISNAD Demir, İzzettin - Üneş, Esra. “Conformable Fractional Milne-Type Inequalities Through Twice-Differentiable Convex Functions”. Fundamental Journal of Mathematics and Applications 8/1 (March 2025), 31-42. https://doi.org/10.33401/fujma.1610936.
JAMA Demir İ, Üneş E. Conformable Fractional Milne-Type Inequalities Through Twice-Differentiable Convex Functions. Fundam. J. Math. Appl. 2025;8:31–42.
MLA Demir, İzzettin and Esra Üneş. “Conformable Fractional Milne-Type Inequalities Through Twice-Differentiable Convex Functions”. Fundamental Journal of Mathematics and Applications, vol. 8, no. 1, 2025, pp. 31-42, doi:10.33401/fujma.1610936.
Vancouver Demir İ, Üneş E. Conformable Fractional Milne-Type Inequalities Through Twice-Differentiable Convex Functions. Fundam. J. Math. Appl. 2025;8(1):31-42.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a