Research Article
BibTex RIS Cite

Extended Semi-Local Convergence of Newton's Method using the Center Lipschitz Condition and the Restricted Convergence Domain

Year 2019, , 5 - 9, 17.06.2019
https://doi.org/10.33401/fujma.503716

Abstract

The objective of this study is to extend the usage of Newton's method for Banach space valued operators. We use our new idea of restricted convergence domain in combination with the center Lipschitz hypothesis on the Frechet-derivatives where the center is not necessarily the initial point. This way our semi-local convergence analysis is tighter than in earlier works (since the new majorizing function is at least as tight as the ones used before) leading to weaker criteria, better error bounds more precise information on the solution. These improvements are obtained under the same computational effort.

References

  • [1] I. K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton’s method, J. Complexity, AMS, 28 (2012), 364–387.
  • [2] I. K. Argyros, S. Hilout, On the quadratic convergence of Newton’s method under center-Lipschitz but not necessarily Lipschitz hypotheses, Math. Slovaca, 63 (2013), 621-638.
  • [3] I. K. Argyros, A. A. Magrenan, Iterative Methods and Their Dynamics with Applications, CRC Press, New York, 2017.
  • [4] H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover Pub., New York, 1992.
  • [5] J. A. Ezquerro, D. Gonzalez, M. A. Hernandez, Majorizing sequences for Newton’s method from initial value problems, J. Comput. Appl. Math., 236 (2012), 2216–2238.
  • [6] J. A. Ezquerro, M. A. Hernandez, Majorizing sequences for nonlinear Fredholdm-Hammerstein integral equations, Stud. Appl. Math., (2017), https://doi.org/10.1111/sapm.12200.
  • [7] J. M. Gutierrez, A. A. Magrenan, N. Romero, On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions, Appl. Math. Comput., 221 (2013), 79–88.
  • [8] Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982.
  • [9] L. B. Rall, Computational Solution of Nonlinear Operator equations, Robert E. Kreger Publishing Company, Michigan, 1979.
  • [10] T. Yamamoto, Historical developments in convergence analysis for Newton’s and Newton-like methods, J. Comput. Appl. Math., 124 (2000), 1–23.
Year 2019, , 5 - 9, 17.06.2019
https://doi.org/10.33401/fujma.503716

Abstract

References

  • [1] I. K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton’s method, J. Complexity, AMS, 28 (2012), 364–387.
  • [2] I. K. Argyros, S. Hilout, On the quadratic convergence of Newton’s method under center-Lipschitz but not necessarily Lipschitz hypotheses, Math. Slovaca, 63 (2013), 621-638.
  • [3] I. K. Argyros, A. A. Magrenan, Iterative Methods and Their Dynamics with Applications, CRC Press, New York, 2017.
  • [4] H. T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover Pub., New York, 1992.
  • [5] J. A. Ezquerro, D. Gonzalez, M. A. Hernandez, Majorizing sequences for Newton’s method from initial value problems, J. Comput. Appl. Math., 236 (2012), 2216–2238.
  • [6] J. A. Ezquerro, M. A. Hernandez, Majorizing sequences for nonlinear Fredholdm-Hammerstein integral equations, Stud. Appl. Math., (2017), https://doi.org/10.1111/sapm.12200.
  • [7] J. M. Gutierrez, A. A. Magrenan, N. Romero, On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions, Appl. Math. Comput., 221 (2013), 79–88.
  • [8] Kantorovich, L.V., Akilov, G.P., Functional Analysis, Pergamon Press, Oxford, 1982.
  • [9] L. B. Rall, Computational Solution of Nonlinear Operator equations, Robert E. Kreger Publishing Company, Michigan, 1979.
  • [10] T. Yamamoto, Historical developments in convergence analysis for Newton’s and Newton-like methods, J. Comput. Appl. Math., 124 (2000), 1–23.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

IIoannis K Argyros This is me 0000-0002-9189-9298

Santhosh George 0000-0002-3530-5539

Publication Date June 17, 2019
Submission Date December 27, 2018
Acceptance Date February 4, 2019
Published in Issue Year 2019

Cite

APA Argyros, I. K., & George, S. (2019). Extended Semi-Local Convergence of Newton’s Method using the Center Lipschitz Condition and the Restricted Convergence Domain. Fundamental Journal of Mathematics and Applications, 2(1), 5-9. https://doi.org/10.33401/fujma.503716
AMA Argyros IK, George S. Extended Semi-Local Convergence of Newton’s Method using the Center Lipschitz Condition and the Restricted Convergence Domain. Fundam. J. Math. Appl. June 2019;2(1):5-9. doi:10.33401/fujma.503716
Chicago Argyros, IIoannis K, and Santhosh George. “Extended Semi-Local Convergence of Newton’s Method Using the Center Lipschitz Condition and the Restricted Convergence Domain”. Fundamental Journal of Mathematics and Applications 2, no. 1 (June 2019): 5-9. https://doi.org/10.33401/fujma.503716.
EndNote Argyros IK, George S (June 1, 2019) Extended Semi-Local Convergence of Newton’s Method using the Center Lipschitz Condition and the Restricted Convergence Domain. Fundamental Journal of Mathematics and Applications 2 1 5–9.
IEEE I. K. Argyros and S. George, “Extended Semi-Local Convergence of Newton’s Method using the Center Lipschitz Condition and the Restricted Convergence Domain”, Fundam. J. Math. Appl., vol. 2, no. 1, pp. 5–9, 2019, doi: 10.33401/fujma.503716.
ISNAD Argyros, IIoannis K - George, Santhosh. “Extended Semi-Local Convergence of Newton’s Method Using the Center Lipschitz Condition and the Restricted Convergence Domain”. Fundamental Journal of Mathematics and Applications 2/1 (June 2019), 5-9. https://doi.org/10.33401/fujma.503716.
JAMA Argyros IK, George S. Extended Semi-Local Convergence of Newton’s Method using the Center Lipschitz Condition and the Restricted Convergence Domain. Fundam. J. Math. Appl. 2019;2:5–9.
MLA Argyros, IIoannis K and Santhosh George. “Extended Semi-Local Convergence of Newton’s Method Using the Center Lipschitz Condition and the Restricted Convergence Domain”. Fundamental Journal of Mathematics and Applications, vol. 2, no. 1, 2019, pp. 5-9, doi:10.33401/fujma.503716.
Vancouver Argyros IK, George S. Extended Semi-Local Convergence of Newton’s Method using the Center Lipschitz Condition and the Restricted Convergence Domain. Fundam. J. Math. Appl. 2019;2(1):5-9.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a