Research Article
BibTex RIS Cite
Year 2020, , 8 - 16, 10.06.2020
https://doi.org/10.33401/fujma.708816

Abstract

References

  • [1] A. Pressley, Elementary Differential Geometry, 2nd ed., Springer, 2010.
  • [2] M. P. do Carmo, Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition, Courier Dover Publications, 2016.
  • [3] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 2, 3rd ed., Publish or Perish, Houston, Texas, 1999.
  • [4] R. S. Millman, G. D. Parker, Elements of Differential Geometry, Prentice-Hall, Inc., New Jersey, 1977.
  • [5] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110 (2003), 147–152.
  • [6] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math., 48 (2017), 209-214.
  • [7] B. Y. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sinica, 33 (2005), 77-90.
  • [8] S. Deshmukh, B. Y. Chen, S. Alshamari, On rectifying curves in Euclidean 3-space, Turk. J. Math., 42 (2018), 609-620.
  • [9] K. Ilarslan, E. Nésovic, Timelike and null normal curves in Minkowski space E31, Indian J. Pure Appl. Math., 35(7) (2004), 881-888.
  • [10] K. Ilarslan, E. Nésovic, On rectifying curves as centrodes and extremal curves in the Minkowski 3-Space, Novi Sad J. Math., 37 (2007), 53-64.
  • [11] K. Ilarslan, E. Nésovic, T. M. Petrovic, Some characterization of rectifying curves in the Minkowski 3-Space, Novi Sad J. Math., 33 (2003), 23-32.
  • [12] R. Lopez, Differential Geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7(1) (2014), 44–107.
  • [13] B. O’Neill, Semi–Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.

Null (Lightlike) $f$-Rectifying Curves in the Three Dimensional Minkowski Space $\mathbb{E}^3_1$

Year 2020, , 8 - 16, 10.06.2020
https://doi.org/10.33401/fujma.708816

Abstract

A rectifying curve $\gamma$ in the Euclidean $3$-space $\mathbb{E}^3$ is defined as a space curve whose position vector always lies in its rectifying plane (i.e., the plane spanned by the unit tangent vector field $T_\gamma$ and the unit binormal vector field $B_\gamma$ of the curve $\gamma$), and an $f$-rectifying curve $\gamma$ in the Euclidean $3$-space $\mathbb{E}^3$ is defined as a space curve whose $f$-position vector $\gamma_f$, defined by $\gamma_f(s) = \int f(s) d\gamma$, always lies in its rectifying plane, where $f$ is a nowhere vanishing real-valued integrable function in arc-length parameter $s$ of the curve $\gamma$. In this paper, we introduce the notion of $f$-rectifying curves which are null (lightlike) in the Minkowski $3$-space $\mathbb{E}^3_1$. Our main aim is to characterize and classify such null (lightlike) $f$-rectifying curves having spacelike or timelike rectifying plane in the Minkowski $3$-Space $\mathbb{E}^3_1$.

References

  • [1] A. Pressley, Elementary Differential Geometry, 2nd ed., Springer, 2010.
  • [2] M. P. do Carmo, Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition, Courier Dover Publications, 2016.
  • [3] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 2, 3rd ed., Publish or Perish, Houston, Texas, 1999.
  • [4] R. S. Millman, G. D. Parker, Elements of Differential Geometry, Prentice-Hall, Inc., New Jersey, 1977.
  • [5] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110 (2003), 147–152.
  • [6] B. Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math., 48 (2017), 209-214.
  • [7] B. Y. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sinica, 33 (2005), 77-90.
  • [8] S. Deshmukh, B. Y. Chen, S. Alshamari, On rectifying curves in Euclidean 3-space, Turk. J. Math., 42 (2018), 609-620.
  • [9] K. Ilarslan, E. Nésovic, Timelike and null normal curves in Minkowski space E31, Indian J. Pure Appl. Math., 35(7) (2004), 881-888.
  • [10] K. Ilarslan, E. Nésovic, On rectifying curves as centrodes and extremal curves in the Minkowski 3-Space, Novi Sad J. Math., 37 (2007), 53-64.
  • [11] K. Ilarslan, E. Nésovic, T. M. Petrovic, Some characterization of rectifying curves in the Minkowski 3-Space, Novi Sad J. Math., 33 (2003), 23-32.
  • [12] R. Lopez, Differential Geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7(1) (2014), 44–107.
  • [13] B. O’Neill, Semi–Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Zafar Iqbal 0000-0003-4405-1160

Joydeep Sengupta This is me 0000-0002-1609-0798

Publication Date June 10, 2020
Submission Date January 24, 2020
Acceptance Date January 15, 2020
Published in Issue Year 2020

Cite

APA Iqbal, Z., & Sengupta, J. (2020). Null (Lightlike) $f$-Rectifying Curves in the Three Dimensional Minkowski Space $\mathbb{E}^3_1$. Fundamental Journal of Mathematics and Applications, 3(1), 8-16. https://doi.org/10.33401/fujma.708816
AMA Iqbal Z, Sengupta J. Null (Lightlike) $f$-Rectifying Curves in the Three Dimensional Minkowski Space $\mathbb{E}^3_1$. Fundam. J. Math. Appl. June 2020;3(1):8-16. doi:10.33401/fujma.708816
Chicago Iqbal, Zafar, and Joydeep Sengupta. “Null (Lightlike) $f$-Rectifying Curves in the Three Dimensional Minkowski Space $\mathbb{E}^3_1$”. Fundamental Journal of Mathematics and Applications 3, no. 1 (June 2020): 8-16. https://doi.org/10.33401/fujma.708816.
EndNote Iqbal Z, Sengupta J (June 1, 2020) Null (Lightlike) $f$-Rectifying Curves in the Three Dimensional Minkowski Space $\mathbb{E}^3_1$. Fundamental Journal of Mathematics and Applications 3 1 8–16.
IEEE Z. Iqbal and J. Sengupta, “Null (Lightlike) $f$-Rectifying Curves in the Three Dimensional Minkowski Space $\mathbb{E}^3_1$”, Fundam. J. Math. Appl., vol. 3, no. 1, pp. 8–16, 2020, doi: 10.33401/fujma.708816.
ISNAD Iqbal, Zafar - Sengupta, Joydeep. “Null (Lightlike) $f$-Rectifying Curves in the Three Dimensional Minkowski Space $\mathbb{E}^3_1$”. Fundamental Journal of Mathematics and Applications 3/1 (June 2020), 8-16. https://doi.org/10.33401/fujma.708816.
JAMA Iqbal Z, Sengupta J. Null (Lightlike) $f$-Rectifying Curves in the Three Dimensional Minkowski Space $\mathbb{E}^3_1$. Fundam. J. Math. Appl. 2020;3:8–16.
MLA Iqbal, Zafar and Joydeep Sengupta. “Null (Lightlike) $f$-Rectifying Curves in the Three Dimensional Minkowski Space $\mathbb{E}^3_1$”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 1, 2020, pp. 8-16, doi:10.33401/fujma.708816.
Vancouver Iqbal Z, Sengupta J. Null (Lightlike) $f$-Rectifying Curves in the Three Dimensional Minkowski Space $\mathbb{E}^3_1$. Fundam. J. Math. Appl. 2020;3(1):8-16.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a