[1] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, ˙Istanbul, 2012.
[2] M. Et, On some difference sequence spaces, Turkish J. Math., 17 (1993), 18-24.
[3] E. E. Kara, M. Başarır, On compact operators and some Euler B^(m) difference sequence spaces, J. Math. Anal. Appl., 379(2) (2011), 499-511.
[4] M. Kirişci, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60 (2010), 1299-1309.
[5] M. Mursaleen, A. K. Noman, On the spaces of $\lambda$-convergent and bounded sequences, Thai J. Math., 8(2) (2012), 311–329.
[6] P. Zengin Alp, M. İlkhan, On the difference sequence space `l_p(T^q), Math. Sci. Appl. E-Notes, 7(2) (2019), 161-173.
[7] M. Mursaleen, F. Başar, B. Altay, On the Euler sequence spaces which include the spaces `p and `¥ II, Nonlinear Anal., 65(3) (2006), 707–717.
[8] S. Demiriz, C. Çakan, Some topological and geometrical properties of a new difference sequence space, Abstr. Appl. Anal., 2011 (2011), Article ID 213878, 14 pages.
[9] M. Et, M. Karakaş, V. Karakaya, Some geometric properties of a new difference sequence space defined by de la Vallee-Poussin mean, Appl. Math. Comput., 234 (2014), 237-244.
[10] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 2013 (2013), 38, 15 pages.
[11] V. Karakaya, Some geometric properties of sequence spaces involving lacunary sequence, J. Inequal. Appl., 2007 (2007), Article ID 81028, 8 pages.
[12] E. Savaş, V. Karakaya, N. Şimşek, Some l(p)-type new sequence spaces and their geometric properties, Abstr. Appl. Anal., 2009 (2009), Article ID 696971, 12 pages.
[13] S. Suantai, On the H-property of some Banach sequence spaces, Arch. Math., 39(4) (2003), 309–316.
[14] N. Şimşek, V. Karakaya, On some geometrical properties of generalized modular spaces of Cesaro type defined by weighted means, J. Inequal. Appl., 2009 (2009), Article ID 932734, 13 pages.
[15] I. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
[16] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
[17] M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen eine ergebnisübersicht, Math. Z., 154 (1977), 1-16.
[18] H. Knaust, Orlicz sequence spaces of Banach-Saks type, Arch. Math., 59(6) (1992), 562-565.
[19] J. Garcia-Falset, Stability and fixed points for nonexpansive mappings, Houston J. Math., 20(3) (1994), 495-506.
[20] J. Garcia-Falset, The fixed point property in Banach spaces with the NUS-property, J. Math. Anal. Appl., 215(2) (1997), 532-542.
[21] L. S`anchez, A. Ull`an, Some properties of Gurarii’s modulus of convexity, Arch. Math., 71 (1998), 399-406.
Certain Geometric Properties and Matrix Transformations on a Newly Introduced Banach Space
The main purpose of this study is to characterize some matrix classes from classical sequence spaces into a newly introduced space and find the norm of some special matrix operators. Also, we give certain geometric properties of this space.
[1] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, ˙Istanbul, 2012.
[2] M. Et, On some difference sequence spaces, Turkish J. Math., 17 (1993), 18-24.
[3] E. E. Kara, M. Başarır, On compact operators and some Euler B^(m) difference sequence spaces, J. Math. Anal. Appl., 379(2) (2011), 499-511.
[4] M. Kirişci, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60 (2010), 1299-1309.
[5] M. Mursaleen, A. K. Noman, On the spaces of $\lambda$-convergent and bounded sequences, Thai J. Math., 8(2) (2012), 311–329.
[6] P. Zengin Alp, M. İlkhan, On the difference sequence space `l_p(T^q), Math. Sci. Appl. E-Notes, 7(2) (2019), 161-173.
[7] M. Mursaleen, F. Başar, B. Altay, On the Euler sequence spaces which include the spaces `p and `¥ II, Nonlinear Anal., 65(3) (2006), 707–717.
[8] S. Demiriz, C. Çakan, Some topological and geometrical properties of a new difference sequence space, Abstr. Appl. Anal., 2011 (2011), Article ID 213878, 14 pages.
[9] M. Et, M. Karakaş, V. Karakaya, Some geometric properties of a new difference sequence space defined by de la Vallee-Poussin mean, Appl. Math. Comput., 234 (2014), 237-244.
[10] E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. Appl., 2013 (2013), 38, 15 pages.
[11] V. Karakaya, Some geometric properties of sequence spaces involving lacunary sequence, J. Inequal. Appl., 2007 (2007), Article ID 81028, 8 pages.
[12] E. Savaş, V. Karakaya, N. Şimşek, Some l(p)-type new sequence spaces and their geometric properties, Abstr. Appl. Anal., 2009 (2009), Article ID 696971, 12 pages.
[13] S. Suantai, On the H-property of some Banach sequence spaces, Arch. Math., 39(4) (2003), 309–316.
[14] N. Şimşek, V. Karakaya, On some geometrical properties of generalized modular spaces of Cesaro type defined by weighted means, J. Inequal. Appl., 2009 (2009), Article ID 932734, 13 pages.
[15] I. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
[16] M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
[17] M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen eine ergebnisübersicht, Math. Z., 154 (1977), 1-16.
[18] H. Knaust, Orlicz sequence spaces of Banach-Saks type, Arch. Math., 59(6) (1992), 562-565.
[19] J. Garcia-Falset, Stability and fixed points for nonexpansive mappings, Houston J. Math., 20(3) (1994), 495-506.
[20] J. Garcia-Falset, The fixed point property in Banach spaces with the NUS-property, J. Math. Anal. Appl., 215(2) (1997), 532-542.
[21] L. S`anchez, A. Ull`an, Some properties of Gurarii’s modulus of convexity, Arch. Math., 71 (1998), 399-406.
İlkhan, M. (2020). Certain Geometric Properties and Matrix Transformations on a Newly Introduced Banach Space. Fundamental Journal of Mathematics and Applications, 3(1), 45-51. https://doi.org/10.33401/fujma.721287
AMA
İlkhan M. Certain Geometric Properties and Matrix Transformations on a Newly Introduced Banach Space. Fundam. J. Math. Appl. June 2020;3(1):45-51. doi:10.33401/fujma.721287
Chicago
İlkhan, Merve. “Certain Geometric Properties and Matrix Transformations on a Newly Introduced Banach Space”. Fundamental Journal of Mathematics and Applications 3, no. 1 (June 2020): 45-51. https://doi.org/10.33401/fujma.721287.
EndNote
İlkhan M (June 1, 2020) Certain Geometric Properties and Matrix Transformations on a Newly Introduced Banach Space. Fundamental Journal of Mathematics and Applications 3 1 45–51.
IEEE
M. İlkhan, “Certain Geometric Properties and Matrix Transformations on a Newly Introduced Banach Space”, Fundam. J. Math. Appl., vol. 3, no. 1, pp. 45–51, 2020, doi: 10.33401/fujma.721287.
ISNAD
İlkhan, Merve. “Certain Geometric Properties and Matrix Transformations on a Newly Introduced Banach Space”. Fundamental Journal of Mathematics and Applications 3/1 (June 2020), 45-51. https://doi.org/10.33401/fujma.721287.
JAMA
İlkhan M. Certain Geometric Properties and Matrix Transformations on a Newly Introduced Banach Space. Fundam. J. Math. Appl. 2020;3:45–51.
MLA
İlkhan, Merve. “Certain Geometric Properties and Matrix Transformations on a Newly Introduced Banach Space”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 1, 2020, pp. 45-51, doi:10.33401/fujma.721287.
Vancouver
İlkhan M. Certain Geometric Properties and Matrix Transformations on a Newly Introduced Banach Space. Fundam. J. Math. Appl. 2020;3(1):45-51.