Research Article
BibTex RIS Cite
Year 2021, , 280 - 288, 01.12.2021
https://doi.org/10.33401/fujma.981385

Abstract

References

  • [1] S. Mondal, G. P. Samanta, Dynamics of a delayed predator–prey interaction incorporating nonlinear prey refuge under the influence of fear effect and additional food, J. Phys. A. Math. Theor., 53(29) (2020), 295601.
  • [2] C.S. Holling, The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly1, Can. Entomol., 91(5) (1959), 293-320.
  • [3] C.S. Holling, Some characteristics of simple types of predation and parasitism1, Can. Entomol., 91(7) (1959), 385-398.
  • [4] C.S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97(45) (1965), 5-60.
  • [5] S. Creel, D. Christianson, S. Liley, J. A. Winnie, Predation risk affects reproductive physiology and demography of elk, Science, 315(5814) (2007), 960-960.
  • [6] K. B. Altendorf, J. W. Laundr´e, C. A. Lopez Gonzalez, J. S. Brown, Assessing effects of predation risk on foraging behaviour of mule deer, J. Mammal., 82(2) (2001), 430-439.
  • [7] L.Y. Zanette, A. F. White, M. C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334(6061) (2011), 1398-1401.
  • [8] S. Pal, S. Majhi, S. Mandal, N. Pal, Role of fear in a predator–prey model with Beddington–DeAngelis functional response, Z. Nat. Forsch. A., 74(7) (2019), 581-595.
  • [9] X. Wang, X. Zou, Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators, Bull. Math. Biol., 79(6) (2017), 1325-1359.
  • [10] S.K. Sasmal, Y. Takeuchi, Dynamics of a predator-prey system with fear and group defense, J. Math. Anal. Appl., 481(1) (2020), 123471.
  • [11] S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model, Math. Biosci. Eng., 16(5) (2019), 5146-5179. 288 Fundamental Journal of Mathematics and Applications
  • [12] A. Das, G. Samanta, A prey–predator model with refuge for prey and additional food for predator in a fluctuating environment, Physica A, 538 (2020), 122844.
  • [13] A. Das, G. P. Samanta, Modeling the fear effect on a stochastic prey-predator system with additional food for the predator, J. Phys. A. Math. Theor.,51(46) (2018), 465601.
  • [14] C. Xu, G. Ren, Y. Yu, Extinction analysis of stochastic predator-prey system with stage structure and crowley-martin functional response, Entropy, 21(3) (2019), 252.
  • [15] Y. Cai, X. Mao, Stochastic prey-predator system with foraging arena scheme, Appl. Math. Model., 64 (2018), 357-371.
  • [16] J. Roy, S. Alam, Fear factor in a prey-predator system in deterministic and stochastic environment, Physica A, 541 (2020), 123359.
  • [17] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator–prey interactions, J. Math. Biol., 73(5) (2016), 1179–1204.
  • [18] L. van Veen, M. Hoti, Saddle-node–transcritical interactions in a stressed predator-prey-nutrient system, arXiv prep., 1809 (2018), 00108.
  • [19] A. Gökçe, Numerical bifurcation analysis for a prey-predator type interactions with a time lag and habitat complexity, Bitlis Eren Uni. Fen Bil. Derg., 10(1)(2020), 57-66.
  • [20] R. M. May, Stability and Complexity in Model Ecosystems, Princeton Uni. P., 2019.
  • [21] Q. Liu, L. Zu, D. Jiang, Dynamics of stochastic predator-prey models with Holling II functional response, Commun. Nonlinear. Sci. Numer. Simul., 37 (2016), 62-76.
  • [22] H. Qiu, M. Liu, K. Wang, Y. Wang, Dynamics of a stochastic predator-prey system with Beddington-DeAngelis functional response, Appl. Math. Comput., 219(4) (2012), 2303-2312.
  • [23] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev. Soc. Ind. Appl. Math., 3(3) (2001), 525-546.
  • [24] A. Gökçe, A mathematical study for chaotic dynamics of dissolved oxygen-phytoplankton interactions under environmental driving factors and time lag, Chaos Solitons Fractals, 151 (2021), 111268.

Exploring a Simple Stochastic Mathematical Model Including Fear with a Linear Functional Response

Year 2021, , 280 - 288, 01.12.2021
https://doi.org/10.33401/fujma.981385

Abstract

This paper concentrates on a simple population model incorporating fear. Firstly, positivity and steady state analysis are performed, where the theoretical investigations show that change in the level of fear in prey population does not effect the local stability of the system around each equilibria (either stable or unstable). For the deterministic model, the numerical simulations are plotted for the density of prey species as a function of various system parameters. The stability analysis of the coexisting state shows that only transcritical bifurcation, where the steady states intersect, is observed. Secondly, the model is analysed with Gaussian noise term incorporated in the prey’s death rate. The model comprising noise term turns the system into stochastic differential equations and irregular noise related oscillations are observed in the densities of both species.

References

  • [1] S. Mondal, G. P. Samanta, Dynamics of a delayed predator–prey interaction incorporating nonlinear prey refuge under the influence of fear effect and additional food, J. Phys. A. Math. Theor., 53(29) (2020), 295601.
  • [2] C.S. Holling, The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly1, Can. Entomol., 91(5) (1959), 293-320.
  • [3] C.S. Holling, Some characteristics of simple types of predation and parasitism1, Can. Entomol., 91(7) (1959), 385-398.
  • [4] C.S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97(45) (1965), 5-60.
  • [5] S. Creel, D. Christianson, S. Liley, J. A. Winnie, Predation risk affects reproductive physiology and demography of elk, Science, 315(5814) (2007), 960-960.
  • [6] K. B. Altendorf, J. W. Laundr´e, C. A. Lopez Gonzalez, J. S. Brown, Assessing effects of predation risk on foraging behaviour of mule deer, J. Mammal., 82(2) (2001), 430-439.
  • [7] L.Y. Zanette, A. F. White, M. C. Allen, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year, Science, 334(6061) (2011), 1398-1401.
  • [8] S. Pal, S. Majhi, S. Mandal, N. Pal, Role of fear in a predator–prey model with Beddington–DeAngelis functional response, Z. Nat. Forsch. A., 74(7) (2019), 581-595.
  • [9] X. Wang, X. Zou, Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators, Bull. Math. Biol., 79(6) (2017), 1325-1359.
  • [10] S.K. Sasmal, Y. Takeuchi, Dynamics of a predator-prey system with fear and group defense, J. Math. Anal. Appl., 481(1) (2020), 123471.
  • [11] S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Fear effect in prey and hunting cooperation among predators in a Leslie-Gower model, Math. Biosci. Eng., 16(5) (2019), 5146-5179. 288 Fundamental Journal of Mathematics and Applications
  • [12] A. Das, G. Samanta, A prey–predator model with refuge for prey and additional food for predator in a fluctuating environment, Physica A, 538 (2020), 122844.
  • [13] A. Das, G. P. Samanta, Modeling the fear effect on a stochastic prey-predator system with additional food for the predator, J. Phys. A. Math. Theor.,51(46) (2018), 465601.
  • [14] C. Xu, G. Ren, Y. Yu, Extinction analysis of stochastic predator-prey system with stage structure and crowley-martin functional response, Entropy, 21(3) (2019), 252.
  • [15] Y. Cai, X. Mao, Stochastic prey-predator system with foraging arena scheme, Appl. Math. Model., 64 (2018), 357-371.
  • [16] J. Roy, S. Alam, Fear factor in a prey-predator system in deterministic and stochastic environment, Physica A, 541 (2020), 123359.
  • [17] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator–prey interactions, J. Math. Biol., 73(5) (2016), 1179–1204.
  • [18] L. van Veen, M. Hoti, Saddle-node–transcritical interactions in a stressed predator-prey-nutrient system, arXiv prep., 1809 (2018), 00108.
  • [19] A. Gökçe, Numerical bifurcation analysis for a prey-predator type interactions with a time lag and habitat complexity, Bitlis Eren Uni. Fen Bil. Derg., 10(1)(2020), 57-66.
  • [20] R. M. May, Stability and Complexity in Model Ecosystems, Princeton Uni. P., 2019.
  • [21] Q. Liu, L. Zu, D. Jiang, Dynamics of stochastic predator-prey models with Holling II functional response, Commun. Nonlinear. Sci. Numer. Simul., 37 (2016), 62-76.
  • [22] H. Qiu, M. Liu, K. Wang, Y. Wang, Dynamics of a stochastic predator-prey system with Beddington-DeAngelis functional response, Appl. Math. Comput., 219(4) (2012), 2303-2312.
  • [23] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev. Soc. Ind. Appl. Math., 3(3) (2001), 525-546.
  • [24] A. Gökçe, A mathematical study for chaotic dynamics of dissolved oxygen-phytoplankton interactions under environmental driving factors and time lag, Chaos Solitons Fractals, 151 (2021), 111268.
There are 24 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Aytül Gökçe 0000-0003-1421-3966

Publication Date December 1, 2021
Submission Date August 11, 2021
Acceptance Date November 4, 2021
Published in Issue Year 2021

Cite

APA Gökçe, A. (2021). Exploring a Simple Stochastic Mathematical Model Including Fear with a Linear Functional Response. Fundamental Journal of Mathematics and Applications, 4(4), 280-288. https://doi.org/10.33401/fujma.981385
AMA Gökçe A. Exploring a Simple Stochastic Mathematical Model Including Fear with a Linear Functional Response. Fundam. J. Math. Appl. December 2021;4(4):280-288. doi:10.33401/fujma.981385
Chicago Gökçe, Aytül. “Exploring a Simple Stochastic Mathematical Model Including Fear With a Linear Functional Response”. Fundamental Journal of Mathematics and Applications 4, no. 4 (December 2021): 280-88. https://doi.org/10.33401/fujma.981385.
EndNote Gökçe A (December 1, 2021) Exploring a Simple Stochastic Mathematical Model Including Fear with a Linear Functional Response. Fundamental Journal of Mathematics and Applications 4 4 280–288.
IEEE A. Gökçe, “Exploring a Simple Stochastic Mathematical Model Including Fear with a Linear Functional Response”, Fundam. J. Math. Appl., vol. 4, no. 4, pp. 280–288, 2021, doi: 10.33401/fujma.981385.
ISNAD Gökçe, Aytül. “Exploring a Simple Stochastic Mathematical Model Including Fear With a Linear Functional Response”. Fundamental Journal of Mathematics and Applications 4/4 (December 2021), 280-288. https://doi.org/10.33401/fujma.981385.
JAMA Gökçe A. Exploring a Simple Stochastic Mathematical Model Including Fear with a Linear Functional Response. Fundam. J. Math. Appl. 2021;4:280–288.
MLA Gökçe, Aytül. “Exploring a Simple Stochastic Mathematical Model Including Fear With a Linear Functional Response”. Fundamental Journal of Mathematics and Applications, vol. 4, no. 4, 2021, pp. 280-8, doi:10.33401/fujma.981385.
Vancouver Gökçe A. Exploring a Simple Stochastic Mathematical Model Including Fear with a Linear Functional Response. Fundam. J. Math. Appl. 2021;4(4):280-8.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a