[1] S. Honda, M. Takahashi, Framed curves in the Euclidean space, Adv. Geom., 16 (2016), 265-276.
[2] Y. Wang, D. Pei, R. Gao, Generic properties of framed rectifying curves, Mathematics, 7(1) (2019), 37.
[3] A. Kızılay, Ö G. Yıldız, O. Z. Okuyucu, Evolution of quaternionic curve in the semi-Euclidean space E4 2 , Math. Meth. Appl. Sci., 44 (2021), 7577–7587, https://doi.org/10.1002/mma.6374.
[4] B. Dog˘an Yazıcı, S. Özkaldı Karakuş, M. Tosun, Framed normal curves in Euclidean space, Tbilisi Math. J., (2020), 27-37.
[5] B. Dog˘an Yazıcı, S. Özkaldı Karakuş, M. Tosun, On the classification of framed rectifying curves in Euclidean space, Math. Meth. Appl. Sci., (2021), 1-10, https://doi.org/10.1002/mma.7561.
[6] C. Özyurt, Singular curves and their properties, Master Thesis, Ankara University, 2021.
[7] S. Honda, T. Masatomo, Evolutes of framed immersions in the Euclidean space, Hokkaido Uni. Preprint Ser. Math., 1095 (2016), 1-24.
[8] T. Fukunaga, M. Takahashi, Existence and uniqueness for Legendre curves, J. Geom. 104 (2013), 297-307.
[9] K. Eren, Ö . G. Yıldız, M. Akyiğit, Tubular surfaces associated with framed base curves in Euclidean 3-space, Math. Meth. Appl. Sci., (2021), 1- 9, https://doi.org/10.1002/mma.7590.
[10] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110 (2003), 147-152.
[11] K. Ilarslan, E. Nesovic, Timelike and null normal curves in Minkowski space E3_1 , Indian J. Pure Appl. Math., 35(7) (2004), 881-888.
[12] K. Ilarslan, Spacelike Normal Curves in Minkowski Space E3_1 , Turk. J. Math., 29 (2005), 53-63.
[13] K. Ilarslan, E. Nesovic, Spacelike and timelike normal curves in Minkowski space-time, Publ. Inst. Math. Belgrade, 85(99) (2009), 111-118.
[14] F. Gökçelik, Z. Bozkurt, ˙I. Gök, F. N. Ekmekçi, Y. Yaylı Parallel transport frame in 4-dimensional Euclidean space, Caspian J. Math. Sci., 3 (2014), 91- 103.
In this paper, we introduce the adapted frame of framed curves and we give the relations between the adapted frame and Frenet type frame of the framed curve in four-dimensional Euclidean space. Moreover, we define the framed normal curves in four-dimensional Euclidean space. We obtain some characterizations of framed normal curves in terms of their framed curvature functions. Furthermore, we give the necessary and sufficient condition for a framed curve to be a framed normal curve.
[1] S. Honda, M. Takahashi, Framed curves in the Euclidean space, Adv. Geom., 16 (2016), 265-276.
[2] Y. Wang, D. Pei, R. Gao, Generic properties of framed rectifying curves, Mathematics, 7(1) (2019), 37.
[3] A. Kızılay, Ö G. Yıldız, O. Z. Okuyucu, Evolution of quaternionic curve in the semi-Euclidean space E4 2 , Math. Meth. Appl. Sci., 44 (2021), 7577–7587, https://doi.org/10.1002/mma.6374.
[4] B. Dog˘an Yazıcı, S. Özkaldı Karakuş, M. Tosun, Framed normal curves in Euclidean space, Tbilisi Math. J., (2020), 27-37.
[5] B. Dog˘an Yazıcı, S. Özkaldı Karakuş, M. Tosun, On the classification of framed rectifying curves in Euclidean space, Math. Meth. Appl. Sci., (2021), 1-10, https://doi.org/10.1002/mma.7561.
[6] C. Özyurt, Singular curves and their properties, Master Thesis, Ankara University, 2021.
[7] S. Honda, T. Masatomo, Evolutes of framed immersions in the Euclidean space, Hokkaido Uni. Preprint Ser. Math., 1095 (2016), 1-24.
[8] T. Fukunaga, M. Takahashi, Existence and uniqueness for Legendre curves, J. Geom. 104 (2013), 297-307.
[9] K. Eren, Ö . G. Yıldız, M. Akyiğit, Tubular surfaces associated with framed base curves in Euclidean 3-space, Math. Meth. Appl. Sci., (2021), 1- 9, https://doi.org/10.1002/mma.7590.
[10] B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110 (2003), 147-152.
[11] K. Ilarslan, E. Nesovic, Timelike and null normal curves in Minkowski space E3_1 , Indian J. Pure Appl. Math., 35(7) (2004), 881-888.
[12] K. Ilarslan, Spacelike Normal Curves in Minkowski Space E3_1 , Turk. J. Math., 29 (2005), 53-63.
[13] K. Ilarslan, E. Nesovic, Spacelike and timelike normal curves in Minkowski space-time, Publ. Inst. Math. Belgrade, 85(99) (2009), 111-118.
[14] F. Gökçelik, Z. Bozkurt, ˙I. Gök, F. N. Ekmekçi, Y. Yaylı Parallel transport frame in 4-dimensional Euclidean space, Caspian J. Math. Sci., 3 (2014), 91- 103.
Akyiğit, M., & Yıldız, Ö. G. (2021). On the Framed Normal Curves in Euclidean 4-space. Fundamental Journal of Mathematics and Applications, 4(4), 258-263. https://doi.org/10.33401/fujma.992917
AMA
Akyiğit M, Yıldız ÖG. On the Framed Normal Curves in Euclidean 4-space. Fundam. J. Math. Appl. December 2021;4(4):258-263. doi:10.33401/fujma.992917
Chicago
Akyiğit, Mahmut, and Önder Gökmen Yıldız. “On the Framed Normal Curves in Euclidean 4-Space”. Fundamental Journal of Mathematics and Applications 4, no. 4 (December 2021): 258-63. https://doi.org/10.33401/fujma.992917.
EndNote
Akyiğit M, Yıldız ÖG (December 1, 2021) On the Framed Normal Curves in Euclidean 4-space. Fundamental Journal of Mathematics and Applications 4 4 258–263.
IEEE
M. Akyiğit and Ö. G. Yıldız, “On the Framed Normal Curves in Euclidean 4-space”, Fundam. J. Math. Appl., vol. 4, no. 4, pp. 258–263, 2021, doi: 10.33401/fujma.992917.
ISNAD
Akyiğit, Mahmut - Yıldız, Önder Gökmen. “On the Framed Normal Curves in Euclidean 4-Space”. Fundamental Journal of Mathematics and Applications 4/4 (December 2021), 258-263. https://doi.org/10.33401/fujma.992917.
JAMA
Akyiğit M, Yıldız ÖG. On the Framed Normal Curves in Euclidean 4-space. Fundam. J. Math. Appl. 2021;4:258–263.
MLA
Akyiğit, Mahmut and Önder Gökmen Yıldız. “On the Framed Normal Curves in Euclidean 4-Space”. Fundamental Journal of Mathematics and Applications, vol. 4, no. 4, 2021, pp. 258-63, doi:10.33401/fujma.992917.
Vancouver
Akyiğit M, Yıldız ÖG. On the Framed Normal Curves in Euclidean 4-space. Fundam. J. Math. Appl. 2021;4(4):258-63.