Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 2, 173 - 179, 20.12.2019
https://doi.org/10.33401/fujma.562819

Abstract

References

  • [1] K. Oldham, J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration of Arbitrary Order, Academic Press, 1974.
  • [2] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, 1993.
  • [3] I. Podlubny, Fractional Differential Equations, Academic Press,1999.
  • [4] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.
  • [5] A. Kurt, O. Tasbozan, Approximate analytical solution of the time fractional Whitham-Broer-Kaup equation using the homotopy analysis method, Int. J. Pure Appl. Math., 98(4) (2015), 503-510.
  • [6] O. Tasbozan, A. Esen, N. M. Yagmurlu, Y. Ucar, A numerical solution to fractional diffusion equation for force-free case, Abstr. Appl. Anal., 2013, Hindawi, (2013).
  • [7] C. Celik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. of Comput. Phys., 231(4) (2012), 1743-1750.
  • [8] Y. Cenesiz, A. Kurt, New fractional complex transform for conformable fractional partial differential equations, J. Appl. Math. Stat. Inf., 12(2) (2016), 41-47.
  • [9] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.
  • [10] M. Eslami, H. Rezazadeh, The first integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo, 53(3) (2016), 475-485.
  • [11] H. Aminikhah, A. R. Sheikhani, H. Rezazadeh, Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives, Sci. Iran. Transaction B, Mech. Eng., 23(3) (2016), 1048.
  • [12] M. S. Osman, A. Korkmaz, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, The unified method for conformable time fractional Schrdinger equation with perturbation terms, Chinese J. Phys., 56(5) (2018), 2500-2506.
  • [13] Y. Cenesiz, D. Baleanu, A. Kurt, O. Tasbozan, New exact solutions of Burgers’ type equations with conformable derivative, Wave. Random. Complex, 27(1) (2017), 103-116.
  • [14] A. Kurt, O. Tasbozan, D. Baleanu, New solutions for conformable fractional Nizhnik-Novikov-Veselov system via G0=G expansion method and homotopy analysis methods, Opt. Quant. Electron., 49(10) (2017), 333.
  • [15] K. Hosseini, P. Mayeli, R. Ansari, Bright and singular soliton solutions of the conformable time-fractional Klein-Gordon equations with different nonlinearities, Wave. Random Complex , 28(3) (2018), 426-434.
  • [16] A. Korkmaz, K. Hosseini, Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods, Opt. Quant. Electron., 49(8) (2017), 278.
  • [17] H. Rezazadeh, H. Tariq, M. Eslami, M. Mirzazadeh, Q. Zhou, New exact solutions of nonlinear conformable time-fractional Phi-4 equation, Chinese J. Phys., 56(6) (2018), 2805-2816.
  • [18] H. Bulut, T.A. Sulaiman, H.M. Baskonus, H. Rezazadeh, M. Eslami, M. Mirzazadeh, Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation, Optik, 172 (2018), 20-27.
  • [19] H. Rezazadeh, S. M. Mirhosseini-Alizamini, M. Eslami, M. Rezazadeh, M. Mirzazadeh, S. Abbagari, New optical solitons of nonlinear conformable fractional Schr¨odinger-Hirota equation, Optik, 172 (2018), 545-553.
  • [20] I. E. Inan, Multiple soliton solutions of some nonlinear partial differential equations, Univers. J. Math. Appl., 1(4) (2018), 273-279.
  • [21] H. Rezazadeh, M. S. Osman, M. Eslami, M. Ekici, A. Sonmezoglu, M. Asma, W. A. M. Othman, B. R. Wong, M. Mirzazadeh, Q. Zhou, A. Biswas, M. Belic, Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity, Optik, 164 (2018), 84-92.
  • [22] A. Biswas, M. O. Al-Amr, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, S. P. Moshokoa, M. Belic, Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution, Optik, 165 (2018), 233-239.
  • [23] H. Bulut, T. A. Sulaiman, H. M. Baskonus, Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion, Optik, 163 (2018), 1-7.
  • [24] M. H. Cherif, D. Ziane, Homotopy analysis Aboodh transform method for nonlinear system of partial differential Equations, Univers. J. Math. Appl., 1(4) (2018), 244-253.
  • [25] A. M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, App. Math. Comput., 184(2) (2007), 1002-1014.
  • [26] D. Ziane, T. M. Elzaki, M. Hamdi Cherif, Elzaki transform combined with variational iteration method for partial differential equations of fractional order, Fundam. J. Math. Appl., 1(1) (2018), 102-108.
  • [27] D. Feng, K. Li, On exact traveling wave solutions for (1+ 1) dimensional Kaup-Kupershmidt equation, Appl. Math., 2(6) (2011), 752-756.
  • [28] C. A. Gomez S, New traveling waves solutions to generalized Kaup-Kupershmidt and Ito equations, Appl. Math. Comput., 216(1) (2010), 241-250.
  • [29] F. Tascan, A. Akbulut, Construction of exact solutions to partial differential equations with CRE method, Commun. Adv. Math. Sci., 2(2) (2019), 105-113.
  • [30] M. H. Cherif, D. Ziane, Variational iteration method combined with new transform to solve fractional partial differential equations, Univers. J. Math. Appl., 1(2) (2018), 113-120.
  • [31] A. H. Salas, Solving the generalized Kaup-Kupershmidt equation, Adv. Studies Theor. Phys., 6(18) (2012), 879-885.
  • [32] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.
  • [33] H. Rezazadeh, A. Korkmaz, M. Eslami, J. Vahidi, R. Asghari, Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method, Opt. Quant. Electron., 50(3) (2018), 150.
  • [34] R. Polat, Finite difference solution to the space-time fractional partial differential-difference Toda lattice equation, J. Math. Sci. Model., 1(3) (2018), 202-205.

The Exact Solutions of Conformable Fractional Partial Differential Equations Using New Sub Equation Method

Year 2019, Volume: 2 Issue: 2, 173 - 179, 20.12.2019
https://doi.org/10.33401/fujma.562819

Abstract

In this article, authors employed the new sub equation method to attain  new traveling wave solutions of conformable time fractional partial differential equations. Conformable fractional derivative is a well behaved, applicable and understandable definition of arbitrary order derivation. Also this derivative obeys the basic properties that Newtonian concept satisfies. In this study authors obtained the exact solution for KDV equation where the fractional derivative is in conformable sense. New solutions are obtained in terms of the generalized version of the trigonometric functions.

References

  • [1] K. Oldham, J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration of Arbitrary Order, Academic Press, 1974.
  • [2] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, 1993.
  • [3] I. Podlubny, Fractional Differential Equations, Academic Press,1999.
  • [4] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.
  • [5] A. Kurt, O. Tasbozan, Approximate analytical solution of the time fractional Whitham-Broer-Kaup equation using the homotopy analysis method, Int. J. Pure Appl. Math., 98(4) (2015), 503-510.
  • [6] O. Tasbozan, A. Esen, N. M. Yagmurlu, Y. Ucar, A numerical solution to fractional diffusion equation for force-free case, Abstr. Appl. Anal., 2013, Hindawi, (2013).
  • [7] C. Celik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. of Comput. Phys., 231(4) (2012), 1743-1750.
  • [8] Y. Cenesiz, A. Kurt, New fractional complex transform for conformable fractional partial differential equations, J. Appl. Math. Stat. Inf., 12(2) (2016), 41-47.
  • [9] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66.
  • [10] M. Eslami, H. Rezazadeh, The first integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo, 53(3) (2016), 475-485.
  • [11] H. Aminikhah, A. R. Sheikhani, H. Rezazadeh, Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives, Sci. Iran. Transaction B, Mech. Eng., 23(3) (2016), 1048.
  • [12] M. S. Osman, A. Korkmaz, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, The unified method for conformable time fractional Schrdinger equation with perturbation terms, Chinese J. Phys., 56(5) (2018), 2500-2506.
  • [13] Y. Cenesiz, D. Baleanu, A. Kurt, O. Tasbozan, New exact solutions of Burgers’ type equations with conformable derivative, Wave. Random. Complex, 27(1) (2017), 103-116.
  • [14] A. Kurt, O. Tasbozan, D. Baleanu, New solutions for conformable fractional Nizhnik-Novikov-Veselov system via G0=G expansion method and homotopy analysis methods, Opt. Quant. Electron., 49(10) (2017), 333.
  • [15] K. Hosseini, P. Mayeli, R. Ansari, Bright and singular soliton solutions of the conformable time-fractional Klein-Gordon equations with different nonlinearities, Wave. Random Complex , 28(3) (2018), 426-434.
  • [16] A. Korkmaz, K. Hosseini, Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods, Opt. Quant. Electron., 49(8) (2017), 278.
  • [17] H. Rezazadeh, H. Tariq, M. Eslami, M. Mirzazadeh, Q. Zhou, New exact solutions of nonlinear conformable time-fractional Phi-4 equation, Chinese J. Phys., 56(6) (2018), 2805-2816.
  • [18] H. Bulut, T.A. Sulaiman, H.M. Baskonus, H. Rezazadeh, M. Eslami, M. Mirzazadeh, Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation, Optik, 172 (2018), 20-27.
  • [19] H. Rezazadeh, S. M. Mirhosseini-Alizamini, M. Eslami, M. Rezazadeh, M. Mirzazadeh, S. Abbagari, New optical solitons of nonlinear conformable fractional Schr¨odinger-Hirota equation, Optik, 172 (2018), 545-553.
  • [20] I. E. Inan, Multiple soliton solutions of some nonlinear partial differential equations, Univers. J. Math. Appl., 1(4) (2018), 273-279.
  • [21] H. Rezazadeh, M. S. Osman, M. Eslami, M. Ekici, A. Sonmezoglu, M. Asma, W. A. M. Othman, B. R. Wong, M. Mirzazadeh, Q. Zhou, A. Biswas, M. Belic, Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity, Optik, 164 (2018), 84-92.
  • [22] A. Biswas, M. O. Al-Amr, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, S. P. Moshokoa, M. Belic, Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution, Optik, 165 (2018), 233-239.
  • [23] H. Bulut, T. A. Sulaiman, H. M. Baskonus, Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion, Optik, 163 (2018), 1-7.
  • [24] M. H. Cherif, D. Ziane, Homotopy analysis Aboodh transform method for nonlinear system of partial differential Equations, Univers. J. Math. Appl., 1(4) (2018), 244-253.
  • [25] A. M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, App. Math. Comput., 184(2) (2007), 1002-1014.
  • [26] D. Ziane, T. M. Elzaki, M. Hamdi Cherif, Elzaki transform combined with variational iteration method for partial differential equations of fractional order, Fundam. J. Math. Appl., 1(1) (2018), 102-108.
  • [27] D. Feng, K. Li, On exact traveling wave solutions for (1+ 1) dimensional Kaup-Kupershmidt equation, Appl. Math., 2(6) (2011), 752-756.
  • [28] C. A. Gomez S, New traveling waves solutions to generalized Kaup-Kupershmidt and Ito equations, Appl. Math. Comput., 216(1) (2010), 241-250.
  • [29] F. Tascan, A. Akbulut, Construction of exact solutions to partial differential equations with CRE method, Commun. Adv. Math. Sci., 2(2) (2019), 105-113.
  • [30] M. H. Cherif, D. Ziane, Variational iteration method combined with new transform to solve fractional partial differential equations, Univers. J. Math. Appl., 1(2) (2018), 113-120.
  • [31] A. H. Salas, Solving the generalized Kaup-Kupershmidt equation, Adv. Studies Theor. Phys., 6(18) (2012), 879-885.
  • [32] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.
  • [33] H. Rezazadeh, A. Korkmaz, M. Eslami, J. Vahidi, R. Asghari, Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method, Opt. Quant. Electron., 50(3) (2018), 150.
  • [34] R. Polat, Finite difference solution to the space-time fractional partial differential-difference Toda lattice equation, J. Math. Sci. Model., 1(3) (2018), 202-205.
There are 34 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ali Kurt 0000-0002-0617-6037

Orkun Tasbozan 0000-0001-5003-6341

Hulya Durur 0000-0002-9297-6873

Publication Date December 20, 2019
Submission Date May 10, 2019
Acceptance Date October 26, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Kurt, A., Tasbozan, O., & Durur, H. (2019). The Exact Solutions of Conformable Fractional Partial Differential Equations Using New Sub Equation Method. Fundamental Journal of Mathematics and Applications, 2(2), 173-179. https://doi.org/10.33401/fujma.562819
AMA Kurt A, Tasbozan O, Durur H. The Exact Solutions of Conformable Fractional Partial Differential Equations Using New Sub Equation Method. Fundam. J. Math. Appl. December 2019;2(2):173-179. doi:10.33401/fujma.562819
Chicago Kurt, Ali, Orkun Tasbozan, and Hulya Durur. “The Exact Solutions of Conformable Fractional Partial Differential Equations Using New Sub Equation Method”. Fundamental Journal of Mathematics and Applications 2, no. 2 (December 2019): 173-79. https://doi.org/10.33401/fujma.562819.
EndNote Kurt A, Tasbozan O, Durur H (December 1, 2019) The Exact Solutions of Conformable Fractional Partial Differential Equations Using New Sub Equation Method. Fundamental Journal of Mathematics and Applications 2 2 173–179.
IEEE A. Kurt, O. Tasbozan, and H. Durur, “The Exact Solutions of Conformable Fractional Partial Differential Equations Using New Sub Equation Method”, Fundam. J. Math. Appl., vol. 2, no. 2, pp. 173–179, 2019, doi: 10.33401/fujma.562819.
ISNAD Kurt, Ali et al. “The Exact Solutions of Conformable Fractional Partial Differential Equations Using New Sub Equation Method”. Fundamental Journal of Mathematics and Applications 2/2 (December 2019), 173-179. https://doi.org/10.33401/fujma.562819.
JAMA Kurt A, Tasbozan O, Durur H. The Exact Solutions of Conformable Fractional Partial Differential Equations Using New Sub Equation Method. Fundam. J. Math. Appl. 2019;2:173–179.
MLA Kurt, Ali et al. “The Exact Solutions of Conformable Fractional Partial Differential Equations Using New Sub Equation Method”. Fundamental Journal of Mathematics and Applications, vol. 2, no. 2, 2019, pp. 173-9, doi:10.33401/fujma.562819.
Vancouver Kurt A, Tasbozan O, Durur H. The Exact Solutions of Conformable Fractional Partial Differential Equations Using New Sub Equation Method. Fundam. J. Math. Appl. 2019;2(2):173-9.

Cited By












Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a