Contact Hamiltonian Description of Systems with Exponentially Decreasing Force and Friction that is Quadratic in Velocity
Year 2020,
Volume: 3 Issue: 1, 29 - 32, 10.06.2020
Furkan Semih Dündar
Abstract
We have given a simple contact Hamiltonian description of a system with exponentially vanishing (or zero) potential under a friction term that is quadratic in velocity. We have given two applications: to cavity solitons and to a free body under air friction.
Thanks
We would like to thank Metin Arık and Bayram Tekin for useful discussions. We also would like to Gülhan Ayar for bringing contact geometry to our attention.
References
-
[1] H. Geiges, A brief history of contact geometry and topology, Expo. Math., 19(1) (2001), 25–53.
-
[2] H. Geiges, Christiaan huygens and contact geometry, (2005) arXiv:math/0501255.
-
[3] A. Bravetti, H. Cruz, D. Tapias, Contact Hamiltonian mechanics, Ann. Phys.-New York, 376 (2017), 17–39.
-
[4] Q. Liu, P. J. Torres, C. Wang, Contact Hamiltonian dynamics: Variational principles, invariants, completeness and periodic behavior, Ann. Phys.-New York, 395 (2018), 26–44.
-
[5] D. Sloan, Dynamical similarity. Phys. Rev. D, 97(12) (2018), 123541.
-
[6] E. Anderson, J. Barbour, B. Foster, N. O Murchadha, Scale-invariant gravity: Geometrodynamics. Classical Quant. Grav., 20 (2003), 1571–1604.
-
[7] E. Anderson, J. Barbour, B. Z. Foster, B. Kelleher, N. O. Murchadha, The physical gravitational degrees of freedom, Classical Quant. Grav., 22 (2005), 1795–1802.
-
[8] J. Barbour, N. O Murchadha, Classical and Quantum Gravity on Conformal Superspace, (1999), arXiv:gr-qc/9911071.
-
[9] F. Mercati, A Shape Dynamics Tutorial, (2014), arXiv:1409.0105.
-
[10] S. R. Anbardan, C. Rimoldi, R. Kheradmand, G. Tissoni, F. Prati, Exponentially decaying interaction potential of cavity solitons, Phys. Rev. E, 97(3) (2018), 032208.
-
[11] L. A. Lugiato, F. Prati, M. Brambilla, L. Columbo, S. Barland, G. Tissoni, K. M. Aghdami, R. Kheradmand, H. Tajalli, H. Vahed, Cavity solitons, In Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics, Springer, 2013, 395–404.