Research Article
BibTex RIS Cite

Disjunctive Total Domination of Some Shadow Distance Graphs

Year 2020, Volume: 3 Issue: 2, 185 - 193, 15.12.2020
https://doi.org/10.33401/fujma.790046

Abstract

Let $ G $ be a graph having vertex set $ V(G) $. For $ S\subseteq V(G) $, if each vertex is adjacent to a vertex in $ S $ or has at least two vertices in $ S $ at distance two from it, then the set $ S $ is a disjunctive total dominating set of $ G $. The disjunctive total domination number is the minimum cardinality of such a set. In this work, we discuss the disjunctive total domination of shadow distance graphs of some graphs such as cycle, path, star, complete bipartite and wheel graphs.

References

  • [1] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998.
  • [2] C. Berge, Graphs and Hypergraphs. North-Holland Mathematical Library, New York, 6, 1973.
  • [3] C. L. Liu, Introduction to Combinatorial Mathematics. McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1968.
  • [4] T. Haynes, D. Knisley, E. Seier, Y. Zou, A quantitative analysis of secondary RNA structure using domination based parameters on trees. BMC bioinformatics, 7 (1) (2006), 1–11.
  • [5] E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi, Total domination in graphs, Networks, 10 (3) (1980), 211-219.
  • [6] M. A. Henning, V. Naicker, Disjunctive total domination in graphs, J. Comb. Optim., 31 (3) (2016), 1090-1110.
  • [7] M. A. Henning, V. Naicker, Bounds on the disjunctive total domination number of a tree, Discuss. Math. Graph Theory, 36 (1) (2016), 153-171.
  • [8] V. Naicker, M. A. Henning, Graphs with large disjunctive total domination number, Discrete Math. Theor. Comput. Sci., 17 (1) (2015), 255-281.
  • [9] C. F. Lin, S. L. Peng, H. D. Yang, Disjunctive total domination numbers of grid graphs, International Computer Symposium (ICS), IEEE, (2016), 80-83.
  • [10] E. Yi, Disjunctive total domination in permutation graphs, Discrete Math. Algorithms Appl., 9 (1) (2017), 1750009.
  • [11] E. Yi, The disjunctive bondage number and the disjunctive total bondage number of graphs, In Combinatorial Optimization and Applications (pp. 660-675). Springer, Cham., 2015.
  • [12] C. Çiftçi, V. Aytaç, Disjunctive total domination subdivision number of graphs, Fund. Inform., 174 (1) (2020), 15-26.
  • [13] B. Sooryanarayana, Certain combinatorial connections between groups, graphs and surfaces, Ph.D. Thesis, 1998.
  • [14] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 17 (2014), 60-62.
  • [15] U. V. Kumar, R. Murali, Edge domination in shadow distance graphs, Int. J. Math. Appl., 4(2-D) (2016), 125-130.
Year 2020, Volume: 3 Issue: 2, 185 - 193, 15.12.2020
https://doi.org/10.33401/fujma.790046

Abstract

References

  • [1] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998.
  • [2] C. Berge, Graphs and Hypergraphs. North-Holland Mathematical Library, New York, 6, 1973.
  • [3] C. L. Liu, Introduction to Combinatorial Mathematics. McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1968.
  • [4] T. Haynes, D. Knisley, E. Seier, Y. Zou, A quantitative analysis of secondary RNA structure using domination based parameters on trees. BMC bioinformatics, 7 (1) (2006), 1–11.
  • [5] E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi, Total domination in graphs, Networks, 10 (3) (1980), 211-219.
  • [6] M. A. Henning, V. Naicker, Disjunctive total domination in graphs, J. Comb. Optim., 31 (3) (2016), 1090-1110.
  • [7] M. A. Henning, V. Naicker, Bounds on the disjunctive total domination number of a tree, Discuss. Math. Graph Theory, 36 (1) (2016), 153-171.
  • [8] V. Naicker, M. A. Henning, Graphs with large disjunctive total domination number, Discrete Math. Theor. Comput. Sci., 17 (1) (2015), 255-281.
  • [9] C. F. Lin, S. L. Peng, H. D. Yang, Disjunctive total domination numbers of grid graphs, International Computer Symposium (ICS), IEEE, (2016), 80-83.
  • [10] E. Yi, Disjunctive total domination in permutation graphs, Discrete Math. Algorithms Appl., 9 (1) (2017), 1750009.
  • [11] E. Yi, The disjunctive bondage number and the disjunctive total bondage number of graphs, In Combinatorial Optimization and Applications (pp. 660-675). Springer, Cham., 2015.
  • [12] C. Çiftçi, V. Aytaç, Disjunctive total domination subdivision number of graphs, Fund. Inform., 174 (1) (2020), 15-26.
  • [13] B. Sooryanarayana, Certain combinatorial connections between groups, graphs and surfaces, Ph.D. Thesis, 1998.
  • [14] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 17 (2014), 60-62.
  • [15] U. V. Kumar, R. Murali, Edge domination in shadow distance graphs, Int. J. Math. Appl., 4(2-D) (2016), 125-130.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Canan Çiftçi 0000-0001-5397-0367

Publication Date December 15, 2020
Submission Date September 3, 2020
Acceptance Date December 9, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Çiftçi, C. (2020). Disjunctive Total Domination of Some Shadow Distance Graphs. Fundamental Journal of Mathematics and Applications, 3(2), 185-193. https://doi.org/10.33401/fujma.790046
AMA Çiftçi C. Disjunctive Total Domination of Some Shadow Distance Graphs. Fundam. J. Math. Appl. December 2020;3(2):185-193. doi:10.33401/fujma.790046
Chicago Çiftçi, Canan. “Disjunctive Total Domination of Some Shadow Distance Graphs”. Fundamental Journal of Mathematics and Applications 3, no. 2 (December 2020): 185-93. https://doi.org/10.33401/fujma.790046.
EndNote Çiftçi C (December 1, 2020) Disjunctive Total Domination of Some Shadow Distance Graphs. Fundamental Journal of Mathematics and Applications 3 2 185–193.
IEEE C. Çiftçi, “Disjunctive Total Domination of Some Shadow Distance Graphs”, Fundam. J. Math. Appl., vol. 3, no. 2, pp. 185–193, 2020, doi: 10.33401/fujma.790046.
ISNAD Çiftçi, Canan. “Disjunctive Total Domination of Some Shadow Distance Graphs”. Fundamental Journal of Mathematics and Applications 3/2 (December 2020), 185-193. https://doi.org/10.33401/fujma.790046.
JAMA Çiftçi C. Disjunctive Total Domination of Some Shadow Distance Graphs. Fundam. J. Math. Appl. 2020;3:185–193.
MLA Çiftçi, Canan. “Disjunctive Total Domination of Some Shadow Distance Graphs”. Fundamental Journal of Mathematics and Applications, vol. 3, no. 2, 2020, pp. 185-93, doi:10.33401/fujma.790046.
Vancouver Çiftçi C. Disjunctive Total Domination of Some Shadow Distance Graphs. Fundam. J. Math. Appl. 2020;3(2):185-93.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a