A Note On Kantorovich Type Operators Which Preserve Affine Functions
Year 2024,
Volume: 7 Issue: 1, 53 - 58, 31.03.2024
Didem Aydın Arı
,
Gizem Uğur Yılmaz
Abstract
The authors present an integral widening of operators which preserve affine functions. Influenced by the operators which preserve affine functions, we define the integral extension of these operators. We give quantitative type theorem using weighted modulus of continuity. Withal quantitative Voronovskaya theorem is aquired by classical modulus of continuity. When the moments of the operator are known, convergence results with the moments obtained for the Kantorovich form of the same operator is given.
References
- [1] A. Aral, D. Cardenas-Morales, P. Garrancho and I. Ras¸a, Bernstein-type operators which preserve polynomials, Comput. Math. Appl., 62(1)
(2011), 158-163. $\href{https://doi.org/10.1016/j.camwa.2011.04.063}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-79959510093&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Bernstein-type+operators+which+preserve+polynomials%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000292853300016}{[\mbox{Web of Science}]} $
- [2] O. Agratini, Kantorovich type operators preserving affine functions, Hacettepe J. Math. Stat.,45(6) (2016),1657-1663. $\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85006247329&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Kantorovich+type+operators+preserving+affine+functions%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000392742200001}{[\mbox{Web of Science}]} $
- [3] A. Aral, D. Aydın Arı and B. Yılmaz, A Note On Kantorovich Type Bernstein Chlodovsky Operator Which Preserve Exponential Functions,
J. Math. Inequal., 15(3), (2021), 1173-1183. $\href{https://doi.org/10.7153/jmi-2021-15-78}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85116803023&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+note+on+Kantorovich+type+Bernstein+Chlodovsky+operators+which+preserve+exponential+function%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000705523600017}{[\mbox{Web of Science}]}$
- [4] A. Aral, D. Otrocol and I. Raşa, On approximation by some Bernstein–Kantorovich exponential-type polynomials, Period. Math. Hung.,79
(2) (2019), 236-253. $\href{https://doi.org/10.1007/s10998-019-00284-3}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85068311018&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+approximation+by+some+Bernstein%E2%80%93Kantorovich+exponential-type+polynomials%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000492157300011}{[\mbox{Web of Science}]} $
- [5] K.J. Ansari, On Kantorovich variant of Baskakov type operators preserving some functions, Filomat, 36(3) (2022), 1049–1060. $\href{https://doi.org/10.2298/FIL2203049A}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85127436273&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Kantorovich+variant+of+Baskakov+type+operators+preserving+some+functions%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000778010200026}{[\mbox{Web of Science}]}$
- [6] K.J. Ansari, S. Karakılıç and F. Özger, Bivariate Bernstein-Kantorovich operators with a summability method and related GBS operators,
Filomat, 36(19), (2022), 6751-6765. $\href{https://doi.org/10.2298/FIL2219751A}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85146789845&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Bivariate+Bernstein-Kantorovich+operators+with+a+summability+method+and+related+GBS+operators%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000945598000022}{[\mbox{Web of Science}]}$
- [7] S. Rahman and K.J. Ansari, Estimation using a summation integral operator of exponential type with a weight derived from the a-Baskakov
basis function, Math. Methods Appl. Sci., 47(4), (2024), 2535-2547. $\href{https://doi.org/10.1002/mma.9763}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85175971378&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Estimation+using+a+summation+integral+operator+of+exponential+type+with+a+weight+derived+from+the%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:001096921900001}{[\mbox{Web of Science}]}$
- [8] F. Usta, M. Akyiğit, F. Say and K.J. Ansari, Bernstein operator method for approximate solution of singularly perturbed Volterra integral
equations, Journal of Mathematical Analysis and Applications, 507(2), (2022) 125828. $\href{https://doi.org/10.1016/j.jmaa.2021.125828}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85119321719&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Bernstein+operator+method+for+approximate+solution+of+singularly+perturbed+Volterra+integral+equations%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000775539700026}{[\mbox{Web of Science}]} $
- [9] L.V. Kantorovich, Sur certains d’eveloppementssuivant les polynmes de la forme de S. Bernstein, I,II.C.R. Acad.URSS, (1930), 563-568 and
595-600.
- [10] A.D. Gadjiev, On P.P. Korovkin type theorems., Math. Zametki, 20(5) (1976), 995-998. $\href{https://doi.org/10.1007/BF01146928}{[\mbox{CrossRef}]}$
- [11] A.D. Gadjiev, The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogous to that of P.P.
Korovkin, Engl. Translated. Sov.Math. Dokl., 15 (1974), 1433-1436.
- [12] F. Altomare and M. Campiti, Korovkin-type Approximation Theory and Its Applications, Walter de Gruyter, New York, (1994). $\href{https://doi.org/10.1515/9783110884586}{[\mbox{CrossRef}]}$
- [13] N. Ispir, On modified Baskakov operators on weighted spaces, Turk. J. Math., 25(3) (2001), 355-365. $\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85006247329&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Kantorovich+type+operators+preserving+affine+functions%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}$
Year 2024,
Volume: 7 Issue: 1, 53 - 58, 31.03.2024
Didem Aydın Arı
,
Gizem Uğur Yılmaz
References
- [1] A. Aral, D. Cardenas-Morales, P. Garrancho and I. Ras¸a, Bernstein-type operators which preserve polynomials, Comput. Math. Appl., 62(1)
(2011), 158-163. $\href{https://doi.org/10.1016/j.camwa.2011.04.063}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-79959510093&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Bernstein-type+operators+which+preserve+polynomials%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000292853300016}{[\mbox{Web of Science}]} $
- [2] O. Agratini, Kantorovich type operators preserving affine functions, Hacettepe J. Math. Stat.,45(6) (2016),1657-1663. $\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85006247329&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Kantorovich+type+operators+preserving+affine+functions%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000392742200001}{[\mbox{Web of Science}]} $
- [3] A. Aral, D. Aydın Arı and B. Yılmaz, A Note On Kantorovich Type Bernstein Chlodovsky Operator Which Preserve Exponential Functions,
J. Math. Inequal., 15(3), (2021), 1173-1183. $\href{https://doi.org/10.7153/jmi-2021-15-78}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85116803023&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+note+on+Kantorovich+type+Bernstein+Chlodovsky+operators+which+preserve+exponential+function%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000705523600017}{[\mbox{Web of Science}]}$
- [4] A. Aral, D. Otrocol and I. Raşa, On approximation by some Bernstein–Kantorovich exponential-type polynomials, Period. Math. Hung.,79
(2) (2019), 236-253. $\href{https://doi.org/10.1007/s10998-019-00284-3}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85068311018&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+approximation+by+some+Bernstein%E2%80%93Kantorovich+exponential-type+polynomials%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000492157300011}{[\mbox{Web of Science}]} $
- [5] K.J. Ansari, On Kantorovich variant of Baskakov type operators preserving some functions, Filomat, 36(3) (2022), 1049–1060. $\href{https://doi.org/10.2298/FIL2203049A}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85127436273&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+Kantorovich+variant+of+Baskakov+type+operators+preserving+some+functions%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000778010200026}{[\mbox{Web of Science}]}$
- [6] K.J. Ansari, S. Karakılıç and F. Özger, Bivariate Bernstein-Kantorovich operators with a summability method and related GBS operators,
Filomat, 36(19), (2022), 6751-6765. $\href{https://doi.org/10.2298/FIL2219751A}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85146789845&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Bivariate+Bernstein-Kantorovich+operators+with+a+summability+method+and+related+GBS+operators%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000945598000022}{[\mbox{Web of Science}]}$
- [7] S. Rahman and K.J. Ansari, Estimation using a summation integral operator of exponential type with a weight derived from the a-Baskakov
basis function, Math. Methods Appl. Sci., 47(4), (2024), 2535-2547. $\href{https://doi.org/10.1002/mma.9763}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85175971378&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Estimation+using+a+summation+integral+operator+of+exponential+type+with+a+weight+derived+from+the%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:001096921900001}{[\mbox{Web of Science}]}$
- [8] F. Usta, M. Akyiğit, F. Say and K.J. Ansari, Bernstein operator method for approximate solution of singularly perturbed Volterra integral
equations, Journal of Mathematical Analysis and Applications, 507(2), (2022) 125828. $\href{https://doi.org/10.1016/j.jmaa.2021.125828}{[\mbox{CrossRef}]}
\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85119321719&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Bernstein+operator+method+for+approximate+solution+of+singularly+perturbed+Volterra+integral+equations%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000775539700026}{[\mbox{Web of Science}]} $
- [9] L.V. Kantorovich, Sur certains d’eveloppementssuivant les polynmes de la forme de S. Bernstein, I,II.C.R. Acad.URSS, (1930), 563-568 and
595-600.
- [10] A.D. Gadjiev, On P.P. Korovkin type theorems., Math. Zametki, 20(5) (1976), 995-998. $\href{https://doi.org/10.1007/BF01146928}{[\mbox{CrossRef}]}$
- [11] A.D. Gadjiev, The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogous to that of P.P.
Korovkin, Engl. Translated. Sov.Math. Dokl., 15 (1974), 1433-1436.
- [12] F. Altomare and M. Campiti, Korovkin-type Approximation Theory and Its Applications, Walter de Gruyter, New York, (1994). $\href{https://doi.org/10.1515/9783110884586}{[\mbox{CrossRef}]}$
- [13] N. Ispir, On modified Baskakov operators on weighted spaces, Turk. J. Math., 25(3) (2001), 355-365. $\href{https://www.\mbox{Scopus}.com/record/display.uri?eid=2-s2.0-85006247329&origin=resultslist&sort=plf-f&src=s&sid=12738d0892cb91a336fec2f7d15edceb&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Kantorovich+type+operators+preserving+affine+functions%22%29&sl=55&sessionSearchId=12738d0892cb91a336fec2f7d15edceb&relpos=0}{[\mbox{Scopus}]}$