Research Article
BibTex RIS Cite

Some Fixed Point Theorems for the New Generalizations of $P$-Contractive Maps

Year 2024, Volume: 7 Issue: 4, 218 - 225, 31.12.2024
https://doi.org/10.33401/fujma.1466353

Abstract

In this paper, we introduce the enriched $P$-contractive and the enriched Suzuki-type $P$-contractive maps, and for such maps, we establish the existence and uniqueness of fixed points (fps) in the setting of normed spaces. Also, we introduce the generalized Suzuki-type $P$-contractive map and prove some fp theorems for this map in compact metric spaces. These results unify, generalize, and complement various comparable results in the literature.

References

  • [1] M. Öztürk and A. Büyükyaka, On some fixed point theorems for $\mathcal{G} (\Sigma, \vartheta, \Xi )$-contractions in modular b-metric spaces, Fundam. J. Math. Appl., 5(4) (2022), 210-227. $ \href{https://doi.org/10.33401/fujma.1107963}{\mbox{[CrossRef]}} $
  • [2] A. Şahin, E. Öztürk and G. Aggarwal, Some fixed-point results for the KF -iteration process in hyperbolic metric spaces, Symmetry, 15(7) (2023), 1360. $\href{https://doi.org/10.3390/sym15071360}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85166333137&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+fixed-point+results+for+the+KF-iteration+process+in+hyperbolic+metric+spaces%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001039707400001}{\mbox{[Web of Science]}} $
  • [3] A. Şahin and O. Alagoz, On the approximation of fixed points for the class of mappings satisfying (CSC)-condition in Hadamard spaces, Carpathian Math. Publ., 15 (2023), 495-506. $ \href{https://doi.org/10.15330/cmp.15.2.495-506}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85179306020&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+approximation+of+fixed+points+for+the+class+of+mappings+satisfying%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001157328600010}{\mbox{[Web of Science]}} $
  • [4] Z. Kalkan, A. Şahin, A. Aloqaily and N. Mlaiki, Some fixed point and stability results in b-metric-like spaces with an application to integral equations on time scales, AIMS Math., 9(5) (2024), 11335–11351. $ \href{https://doi.org/10.3934/math.2024556}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85191449067&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+fixed+point+and+stability+results+in%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001223504600014}{\mbox{[Web of Science]}} $
  • [5] N. Turan, M. Başarır and A. Şahin, On the solutions of the second-order (p,q)-difference equation with an application to the fixed-point theory, AIMS Math., 9(5) (2024), 10679–10697. $ \href{https://doi.org/10.3934/math.2024521}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85188231671&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22equation+with+an+application+to+the+fixed-point+theory%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001197577500011}{\mbox{[Web of Science]}} $
  • [6] G. Aggarwal, I. Uddin and A. Şahin, On common fixed points of non-Lipschitzian semigroups in a hyperbolic metric space endowed with a graph, J. Anal., 32(4) (2024), 2233–2243. $ \href{https://doi.org/10.1007/s41478-023-00683-3}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85177239336&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+common+fixed+points+of+non-Lipschitzian+semigroups+in+a+hyperbolic+metric+space+endowed+with+a+graph%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001105965300001}{\mbox{[Web of Science]}} $
  • [7] A. Şahin and M. Başarır, On the Fixed Point Outcomes of a Modified Iteration Procedure on Kohlenbach Hyperbolic Space with an Application, In: B. Hazarika, S. Acharjee and D. S. Djordjevic, (Eds.), Advances in Functional Analysis and Fixed-Point Theory, 25–49, Industrial ´ and Applied Mathematics, Springer, Singapore, (2024). $ \href{https://doi.org/10.1007/978-981-99-9207-2_3}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85191709588&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+fixed+point+outcomes+of+a+modified+iteration+procedure+on+Kohlenbach+hyperbolic%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}}$
  • [8] V. Pazhani and M. Jeyaraman, Fixed point theorems in G -fuzzy convex metric spaces, Fundam. J. Math. Appl., 5(3) (2022), 145-151. $\href{https://doi.org/10.33401/fujma.1034862}{\mbox{[CrossRef]}} $
  • [9] C. Ganesa Moorthy, Fixed point formulation using exponential logarithmic transformations and its applications, Fundam. J. Math. Appl., 3(2) (2020), 125-136. $ \href{https://doi.org/10.33401/fujma.780396}{\mbox{[CrossRef]}} $
  • [10] E. Dalan Yıldırım, A. Çaksu Güler and O. B. Özbakır, Some fixed point theorems on b-θ-metric spaces via b-simulation functions, Fundam. J. Math. Appl., 4(3) (2021), 159 - 164. $ \href{https://doi.org/10.33401/fujma.890533}{\mbox{[CrossRef]}} $
  • [11] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations int egrales, Fundam. Math., 3(1) (1922), 133-181. $ \href{http://matwbn.icm.edu.pl/ksiazki/fm/fm3/fm3120.pdf}{\mbox{[Web]}} $
  • [12] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37(1) (1962), 74–79. $ \href{https://doi.org/10.1112/jlms/s1-37.1.74}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84963019042&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+fixed+and+periodic+points+under+contractive+mappings%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=2}{\mbox{[Scopus]}} $
  • [13] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. Theory Methods Appl., 71(11) (2009), 5313–5317. $\href{https://doi.org/10.1016/j.na.2009.04.017}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-68349121603&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+new+type+of+fixed+point+theorem+in+metric+spaces%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=6}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000270609500022}{\mbox{[Web of Science]}} $
  • [14] O. Popescu, Fixed point theorem in metric spaces, Bull. Transilv. Univ. Bras. III: Math. Inform. Phys., 1(50) (2008), 479–482.
  • [15] V. Berinde and M. Pacurar, Approximating fixed points of enriched contractions in Banach spaces, J. Fix. Point Theory A., 22(2) (2020), 1-10. $ \href{https://doi.org/10.1007/s11784-020-0769-9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85082339046&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Approximating+fixed+points+of+enriched+contractions+in+Banach+spaces%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=3}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000521156200001}{\mbox{[Web of Science]}} $
  • [16] M. Abbas, R. Anjum and V. Rakocevic, A generalized Suzuki–Berinde contraction that characterizes Banach spaces, J. Appl. Anal., 29(2) (2023), 239-250. $ \href{https://doi.org/10.1515/jaa-2022-2007}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85143809410&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+generalized+Suzuki%E2%80%93Berinde+contraction+that+characterizes+Banach+spaces%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000892362900001}{\mbox{[Web of Science]}} $
  • [17] İ. Altun, H.A. Hançer and M.D. Ateş, Enriched P-contractions on normed space and a fixed point result, Turk. J. Math. Comput. Sci., 16(1) (2024), 64-69. $ \href{https://doi.org/10.47000/tjmcs.1391969}{\mbox{[CrossRef]}} $
  • [18] İ. Altun, G. Durmaz and M. Olgun, P-contractive mappings on metric spaces, J. Nonlinear Funct. Anal., 2018 (2018), Article ID 43. $ \href{https://doi.org/10.23952/jnfa.2018.43}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85070272522&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22%24P%24-contractive+mappings+on+metric+spaces%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000454873800004}{\mbox{[Web of Science]}} $
  • [19] İ. Altun, Suzuki-type P-contractive mappings, Proc. Int. Math. Sci., 5(1) (2023), 1–4. $ \href{https://doi.org/10.47086/pims.1205921}{\mbox{[CrossRef]}} $
  • [20] İ. Altun and H.A. Hançer, Almost Picard operators, AIP Conf. Proc., 2183 (2019), 060003. $\href{https://doi.org/10.1063/1.5136158}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000505225800055}{\mbox{[Web of Science]}} $
  • [21] R.P. Agarwal, D. O’Regan and D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer Dordrecht Heidelberg London New York, (2009). $\href{https://doi.org/10.1007/978-0-387-75818-3}{\mbox{[CrossRef]}} $
Year 2024, Volume: 7 Issue: 4, 218 - 225, 31.12.2024
https://doi.org/10.33401/fujma.1466353

Abstract

References

  • [1] M. Öztürk and A. Büyükyaka, On some fixed point theorems for $\mathcal{G} (\Sigma, \vartheta, \Xi )$-contractions in modular b-metric spaces, Fundam. J. Math. Appl., 5(4) (2022), 210-227. $ \href{https://doi.org/10.33401/fujma.1107963}{\mbox{[CrossRef]}} $
  • [2] A. Şahin, E. Öztürk and G. Aggarwal, Some fixed-point results for the KF -iteration process in hyperbolic metric spaces, Symmetry, 15(7) (2023), 1360. $\href{https://doi.org/10.3390/sym15071360}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85166333137&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+fixed-point+results+for+the+KF-iteration+process+in+hyperbolic+metric+spaces%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001039707400001}{\mbox{[Web of Science]}} $
  • [3] A. Şahin and O. Alagoz, On the approximation of fixed points for the class of mappings satisfying (CSC)-condition in Hadamard spaces, Carpathian Math. Publ., 15 (2023), 495-506. $ \href{https://doi.org/10.15330/cmp.15.2.495-506}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85179306020&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+approximation+of+fixed+points+for+the+class+of+mappings+satisfying%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001157328600010}{\mbox{[Web of Science]}} $
  • [4] Z. Kalkan, A. Şahin, A. Aloqaily and N. Mlaiki, Some fixed point and stability results in b-metric-like spaces with an application to integral equations on time scales, AIMS Math., 9(5) (2024), 11335–11351. $ \href{https://doi.org/10.3934/math.2024556}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85191449067&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Some+fixed+point+and+stability+results+in%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001223504600014}{\mbox{[Web of Science]}} $
  • [5] N. Turan, M. Başarır and A. Şahin, On the solutions of the second-order (p,q)-difference equation with an application to the fixed-point theory, AIMS Math., 9(5) (2024), 10679–10697. $ \href{https://doi.org/10.3934/math.2024521}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85188231671&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22equation+with+an+application+to+the+fixed-point+theory%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001197577500011}{\mbox{[Web of Science]}} $
  • [6] G. Aggarwal, I. Uddin and A. Şahin, On common fixed points of non-Lipschitzian semigroups in a hyperbolic metric space endowed with a graph, J. Anal., 32(4) (2024), 2233–2243. $ \href{https://doi.org/10.1007/s41478-023-00683-3}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85177239336&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+common+fixed+points+of+non-Lipschitzian+semigroups+in+a+hyperbolic+metric+space+endowed+with+a+graph%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:001105965300001}{\mbox{[Web of Science]}} $
  • [7] A. Şahin and M. Başarır, On the Fixed Point Outcomes of a Modified Iteration Procedure on Kohlenbach Hyperbolic Space with an Application, In: B. Hazarika, S. Acharjee and D. S. Djordjevic, (Eds.), Advances in Functional Analysis and Fixed-Point Theory, 25–49, Industrial ´ and Applied Mathematics, Springer, Singapore, (2024). $ \href{https://doi.org/10.1007/978-981-99-9207-2_3}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85191709588&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+fixed+point+outcomes+of+a+modified+iteration+procedure+on+Kohlenbach+hyperbolic%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}}$
  • [8] V. Pazhani and M. Jeyaraman, Fixed point theorems in G -fuzzy convex metric spaces, Fundam. J. Math. Appl., 5(3) (2022), 145-151. $\href{https://doi.org/10.33401/fujma.1034862}{\mbox{[CrossRef]}} $
  • [9] C. Ganesa Moorthy, Fixed point formulation using exponential logarithmic transformations and its applications, Fundam. J. Math. Appl., 3(2) (2020), 125-136. $ \href{https://doi.org/10.33401/fujma.780396}{\mbox{[CrossRef]}} $
  • [10] E. Dalan Yıldırım, A. Çaksu Güler and O. B. Özbakır, Some fixed point theorems on b-θ-metric spaces via b-simulation functions, Fundam. J. Math. Appl., 4(3) (2021), 159 - 164. $ \href{https://doi.org/10.33401/fujma.890533}{\mbox{[CrossRef]}} $
  • [11] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations int egrales, Fundam. Math., 3(1) (1922), 133-181. $ \href{http://matwbn.icm.edu.pl/ksiazki/fm/fm3/fm3120.pdf}{\mbox{[Web]}} $
  • [12] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37(1) (1962), 74–79. $ \href{https://doi.org/10.1112/jlms/s1-37.1.74}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84963019042&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+fixed+and+periodic+points+under+contractive+mappings%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=2}{\mbox{[Scopus]}} $
  • [13] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. Theory Methods Appl., 71(11) (2009), 5313–5317. $\href{https://doi.org/10.1016/j.na.2009.04.017}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-68349121603&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+new+type+of+fixed+point+theorem+in+metric+spaces%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=6}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000270609500022}{\mbox{[Web of Science]}} $
  • [14] O. Popescu, Fixed point theorem in metric spaces, Bull. Transilv. Univ. Bras. III: Math. Inform. Phys., 1(50) (2008), 479–482.
  • [15] V. Berinde and M. Pacurar, Approximating fixed points of enriched contractions in Banach spaces, J. Fix. Point Theory A., 22(2) (2020), 1-10. $ \href{https://doi.org/10.1007/s11784-020-0769-9}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85082339046&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Approximating+fixed+points+of+enriched+contractions+in+Banach+spaces%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=3}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000521156200001}{\mbox{[Web of Science]}} $
  • [16] M. Abbas, R. Anjum and V. Rakocevic, A generalized Suzuki–Berinde contraction that characterizes Banach spaces, J. Appl. Anal., 29(2) (2023), 239-250. $ \href{https://doi.org/10.1515/jaa-2022-2007}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85143809410&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22A+generalized+Suzuki%E2%80%93Berinde+contraction+that+characterizes+Banach+spaces%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000892362900001}{\mbox{[Web of Science]}} $
  • [17] İ. Altun, H.A. Hançer and M.D. Ateş, Enriched P-contractions on normed space and a fixed point result, Turk. J. Math. Comput. Sci., 16(1) (2024), 64-69. $ \href{https://doi.org/10.47000/tjmcs.1391969}{\mbox{[CrossRef]}} $
  • [18] İ. Altun, G. Durmaz and M. Olgun, P-contractive mappings on metric spaces, J. Nonlinear Funct. Anal., 2018 (2018), Article ID 43. $ \href{https://doi.org/10.23952/jnfa.2018.43}{\mbox{[CrossRef]}} \href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85070272522&origin=resultslist&sort=plf-f&src=s&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22%24P%24-contractive+mappings+on+metric+spaces%22%29&sessionSearchId=a2378a762639a842d9dd5eeb5c664f1b&relpos=0}{\mbox{[Scopus]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000454873800004}{\mbox{[Web of Science]}} $
  • [19] İ. Altun, Suzuki-type P-contractive mappings, Proc. Int. Math. Sci., 5(1) (2023), 1–4. $ \href{https://doi.org/10.47086/pims.1205921}{\mbox{[CrossRef]}} $
  • [20] İ. Altun and H.A. Hançer, Almost Picard operators, AIP Conf. Proc., 2183 (2019), 060003. $\href{https://doi.org/10.1063/1.5136158}{\mbox{[CrossRef]}} \href{https://www.webofscience.com/wos/woscc/full-record/WOS:000505225800055}{\mbox{[Web of Science]}} $
  • [21] R.P. Agarwal, D. O’Regan and D.R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer Dordrecht Heidelberg London New York, (2009). $\href{https://doi.org/10.1007/978-0-387-75818-3}{\mbox{[CrossRef]}} $
There are 21 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Articles
Authors

Aynur Şahin 0000-0001-6114-9966

Buse Demir 0009-0008-7337-5934

Publication Date December 31, 2024
Submission Date April 7, 2024
Acceptance Date November 5, 2024
Published in Issue Year 2024 Volume: 7 Issue: 4

Cite

APA Şahin, A., & Demir, B. (2024). Some Fixed Point Theorems for the New Generalizations of $P$-Contractive Maps. Fundamental Journal of Mathematics and Applications, 7(4), 218-225. https://doi.org/10.33401/fujma.1466353
AMA Şahin A, Demir B. Some Fixed Point Theorems for the New Generalizations of $P$-Contractive Maps. Fundam. J. Math. Appl. December 2024;7(4):218-225. doi:10.33401/fujma.1466353
Chicago Şahin, Aynur, and Buse Demir. “Some Fixed Point Theorems for the New Generalizations of $P$-Contractive Maps”. Fundamental Journal of Mathematics and Applications 7, no. 4 (December 2024): 218-25. https://doi.org/10.33401/fujma.1466353.
EndNote Şahin A, Demir B (December 1, 2024) Some Fixed Point Theorems for the New Generalizations of $P$-Contractive Maps. Fundamental Journal of Mathematics and Applications 7 4 218–225.
IEEE A. Şahin and B. Demir, “Some Fixed Point Theorems for the New Generalizations of $P$-Contractive Maps”, Fundam. J. Math. Appl., vol. 7, no. 4, pp. 218–225, 2024, doi: 10.33401/fujma.1466353.
ISNAD Şahin, Aynur - Demir, Buse. “Some Fixed Point Theorems for the New Generalizations of $P$-Contractive Maps”. Fundamental Journal of Mathematics and Applications 7/4 (December 2024), 218-225. https://doi.org/10.33401/fujma.1466353.
JAMA Şahin A, Demir B. Some Fixed Point Theorems for the New Generalizations of $P$-Contractive Maps. Fundam. J. Math. Appl. 2024;7:218–225.
MLA Şahin, Aynur and Buse Demir. “Some Fixed Point Theorems for the New Generalizations of $P$-Contractive Maps”. Fundamental Journal of Mathematics and Applications, vol. 7, no. 4, 2024, pp. 218-25, doi:10.33401/fujma.1466353.
Vancouver Şahin A, Demir B. Some Fixed Point Theorems for the New Generalizations of $P$-Contractive Maps. Fundam. J. Math. Appl. 2024;7(4):218-25.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a