Research Article
BibTex RIS Cite

Sinirsel Bulanık Ağlarla Asenkron Motorların Algılayıcısız Denetimi

Year 2020, Volume: 32 Issue: 2, 457 - 468, 24.09.2020
https://doi.org/10.35234/fumbd.699041

Abstract

Bu çalışmada, akım gözlemleyici olarak kullanılan sinirsel bulanık ağlarla asenkron motorun (ASM) algılayıcısız hız denetimi gerçekleştirilmiştir. Önerilen sinirsel bulanık akım gözlemleyici, akı ve hız tahmini yapmak yerine doğrudan denetleyici olarak kullanılmıştır. Sinirsel bulanık akım gözlemleyici, deneysel verilerle gerçek zamanlı eğitilmiş ve eğitilmiş ağ yapısı kullanılarak farklı çalışma koşullarında denetim sisteminin başarımı test edilmiştir. Sinirsel bulanık ağın eğitimi ve denetim algoritması MATLAB/Simulink ortamında programlanmış ve DSPACE-DS1104 sayısal işaret işlemcisi (Sİİ) ile gerçekleştirilmiştir. Deneysel sonuçlar, değişkenlere gerçek zamanlı erişimi sağlayabilen Control Desk Developer yazılımı kullanılarak oluşturulan bir arayüzden elde edilmiştir. Farklı hız ve yük koşullarında elde edilen benzetim ve deneysel sonuçlarla, önerilen algılayıcısız denetim yönteminin başarımı gösterilmiştir.

References

  • 1. Kojabadi, H. M., Chang, L., & Doriaswami, R. 2002, June. Recent progress in sensorless vector controlled induction motor drives. In LESCOPE'02. 2002 Large Engineering Systems Conference on Power Engineering, Conference Proceedings, IEEE: 80-85.
  • 2. Kim, Y. R., Sul, S. K., and Park, M. H., 1994. Speed Sensorless Vector Control of Induction Motor Using Extended Kalman Filter, IEEE Trans. Ind. Appl., 30 (5): 1225-1233.
  • 3. Du, T., Vas, P., and Stronach, F., 1995. Design and Application of Extended Observers for Joint State and Parameter Estimation in High-Performance AC Drives, IEE Proc. Electr. Power Appl., 142 (2): 71-77.
  • 4. Al-Tayie, J., and Acamley, P., 1997. Estimation of Speed Stator Temperature and Rotor Temperature in Cage Induction Motor Drive Using Extended Kalman Filter Algorithm, Proc. IEE-Elec. Power Appl., 144: 301-309.
  • 5. Schauder, C., 1992. Adaptive Speed Identification for Vector Control of Induction Motors without Rotational Transducers, IEEE Trans. Indus. Appl., 28: 1054-1061.
  • 6. Lin, Y. N., Chen, C. L., 1999. Adaptive Pseudoreduced-Order Flux Observe for Speed Sensorless Field Oriented Control of IM, IEEE Trans. Ind. Electron., 46: 1042-1045.
  • 7. Yang, G., and Chin, T. H., 1993. Adaptive-Speed Identification Scheme for Vector-Controlled Speed Sensorless Inverter-Induction Motor Drive, IEEE Trans. Ind. Appl., 29 (4): 820-825.
  • 8. Peng, F. Z., and Fukao, T., 1994. Robust Speed Identification for Speed Sensorless Vector Control of Induction Motors, IEEE Trans. Ind. Appl., 30 (5): 1234-1240.
  • 9. Kojabadi, H. M., and Chang, L, 2002. Model Reference Adaptive System Pseudoreduced-Order Flux Observer for Very Low-Speed and Zero-Speed Estimation in Sensorless Induction Motor Drives, in Proc. of Power Elec. Specialist Conf. PESC, 301-305.
  • 10. Derdiyok, A., 2005. Speed-sensorless control of induction motor using a continuous control approach of sliding-mode and flux observer, IEEE Transactions on Industrial Electronics, 52 (4): 1170-1176. 11. Reman, H., Derdiyok, A., Güven, M. K., 2002. A New Current Model Flux Observer for Wide Speed Range Sensorless Control of an Induction Machine, IEEE Trans. Power Elec., 17 (6): 1041-1048.
  • 12. Ben-Brahim, L., 1995. Motor Speed Identification via Neural Networks, Industry Applications Magazine, IEEE, 1: 28-32.
  • 13. Xianmin, M., Zhi, N., 2000. Neural Network Speed Identification Scheme for speed Sensor-less DTC Induction Motor Drive System, Power Electronics and Motion Control Conference, 1242-1245.
  • 14. Ben-Brahim, L., Tadakuma, S., 1998. Speed Control of Induction Motor without Rotational Transducers, Industry Applications Conference, IEEE, 625-632.
  • 15. Cirrincione, M., Pucci, M., 2003. An MRAS Based Speed Estimation Method with a Linear Neuron for High Performance Induction Motor Drives and Its Experimentation, Electric Machines and Drives Conference, IEMDC'03, IEEE, 617-623.
  • 16. Karanayil, B., Rahman, M.F., Grantham, C., 2002. Speed Sensorless Vector Controlled Induction Motor Drive with Rotor Time Constant Identification Using Artificial Neural Networks, Intelligent Control, 2002. Proceedings of the 2002 IEEE International Symposium, 715-720.
  • 17. Kim, S.H., Park , T.S., Yoo, J.Y., Park, G.T., 2001. Speed-Sensorless Vector Control of an Induction Motor Using Neural Network Speed Estimation, IEEE Transactions on Industrial Electronics, 48: 609-614.
  • 18. Orlowska-Kowalska, T., Kowalski, C.T., 1997. Neural Network Application for Flux and Speed Estimation in the Sensorless Induction Motor Drive, Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE '97, 1253-1258.
  • 19. Lu., H-C., Hung, T-H., and Tsai, C-H., 2000. Sensorless Vector Control of Indcution Motor Using Artificial Neural Network, ISCAS 2000-IEEE Int. Sym. On Circuits And Systems Geneva, Switzerland, 489-492.
  • 20. Jalili, K., Farhangi, S., and Iranizad, E. S., 2001. Sensorless Vector Control of Induction Motors in Fuel Cell Vehicle Using a Neuro-Fuzzy Speed Controller and an On-Line Artificial Neural Network Speed Estimator, Proc. IEEE Int. Conf. Control Appl., 259-264.
  • 21. Leksono, E., Prihatin, R., Kadiman, K., 2000. Fuzzy Auto Reset Controller for Speed Sensorless Induction Motor Drive, Industrial Electronics Society, 2000. IECON 2000. 26th Annual Conference of the IEEE, 2321-2326.
  • 22. Campbell, J., and Summer, M., 2002. Practical Sensorless Induction Motor Drive Employing an Artificial Neural Network for Online Parameter Adaptation, IEE Proc-Elect. Power Appl., 149 (4): 255-260.
  • 23. Montanari, M., Peresada, S. M., Rossi, C., & Tilli, A, 2007. Speed sensorless control of induction motors based on a reduced-order adaptive observer, IEEE Transactions On Control Systems Technology, 15 (6): 1049-1064.
  • 24. Purwanto, E., Arifin, S., Bian-Sioe So., 2001. Application of Adaptive Neuro Fuzzy Inference System on the Development of the Observer for Speed Sensorless Induction Motor, Electrical and Electronic Technology, 2001. TENCON. Proceedings of IEEE Region 10 International Conference, 409-414.
  • 25. Zhang, J., Morris, A. J., 1995. Fuzzy Neural Networks for Nonlinear Systems Modeling, Proc. Inst. Elect. Eng. Contr. Theory Appl., 142: 551-556.
  • 26. Kwon, Y. A., Kim, S. H., 2004. A New Scheme For Speed-Sensorless Control of Indcution Motor”, IEEE Trans. Ind. Elect., 51 (3): 545-550.
  • 27. Kwon, Y. A., Kim, S. H., and Oh, S. H., 1997. Speed Sensorless Control of Induction Motor by Current Error Compensation, IECON Control and Enst. Conf., 966-970.
Year 2020, Volume: 32 Issue: 2, 457 - 468, 24.09.2020
https://doi.org/10.35234/fumbd.699041

Abstract

References

  • 1. Kojabadi, H. M., Chang, L., & Doriaswami, R. 2002, June. Recent progress in sensorless vector controlled induction motor drives. In LESCOPE'02. 2002 Large Engineering Systems Conference on Power Engineering, Conference Proceedings, IEEE: 80-85.
  • 2. Kim, Y. R., Sul, S. K., and Park, M. H., 1994. Speed Sensorless Vector Control of Induction Motor Using Extended Kalman Filter, IEEE Trans. Ind. Appl., 30 (5): 1225-1233.
  • 3. Du, T., Vas, P., and Stronach, F., 1995. Design and Application of Extended Observers for Joint State and Parameter Estimation in High-Performance AC Drives, IEE Proc. Electr. Power Appl., 142 (2): 71-77.
  • 4. Al-Tayie, J., and Acamley, P., 1997. Estimation of Speed Stator Temperature and Rotor Temperature in Cage Induction Motor Drive Using Extended Kalman Filter Algorithm, Proc. IEE-Elec. Power Appl., 144: 301-309.
  • 5. Schauder, C., 1992. Adaptive Speed Identification for Vector Control of Induction Motors without Rotational Transducers, IEEE Trans. Indus. Appl., 28: 1054-1061.
  • 6. Lin, Y. N., Chen, C. L., 1999. Adaptive Pseudoreduced-Order Flux Observe for Speed Sensorless Field Oriented Control of IM, IEEE Trans. Ind. Electron., 46: 1042-1045.
  • 7. Yang, G., and Chin, T. H., 1993. Adaptive-Speed Identification Scheme for Vector-Controlled Speed Sensorless Inverter-Induction Motor Drive, IEEE Trans. Ind. Appl., 29 (4): 820-825.
  • 8. Peng, F. Z., and Fukao, T., 1994. Robust Speed Identification for Speed Sensorless Vector Control of Induction Motors, IEEE Trans. Ind. Appl., 30 (5): 1234-1240.
  • 9. Kojabadi, H. M., and Chang, L, 2002. Model Reference Adaptive System Pseudoreduced-Order Flux Observer for Very Low-Speed and Zero-Speed Estimation in Sensorless Induction Motor Drives, in Proc. of Power Elec. Specialist Conf. PESC, 301-305.
  • 10. Derdiyok, A., 2005. Speed-sensorless control of induction motor using a continuous control approach of sliding-mode and flux observer, IEEE Transactions on Industrial Electronics, 52 (4): 1170-1176. 11. Reman, H., Derdiyok, A., Güven, M. K., 2002. A New Current Model Flux Observer for Wide Speed Range Sensorless Control of an Induction Machine, IEEE Trans. Power Elec., 17 (6): 1041-1048.
  • 12. Ben-Brahim, L., 1995. Motor Speed Identification via Neural Networks, Industry Applications Magazine, IEEE, 1: 28-32.
  • 13. Xianmin, M., Zhi, N., 2000. Neural Network Speed Identification Scheme for speed Sensor-less DTC Induction Motor Drive System, Power Electronics and Motion Control Conference, 1242-1245.
  • 14. Ben-Brahim, L., Tadakuma, S., 1998. Speed Control of Induction Motor without Rotational Transducers, Industry Applications Conference, IEEE, 625-632.
  • 15. Cirrincione, M., Pucci, M., 2003. An MRAS Based Speed Estimation Method with a Linear Neuron for High Performance Induction Motor Drives and Its Experimentation, Electric Machines and Drives Conference, IEMDC'03, IEEE, 617-623.
  • 16. Karanayil, B., Rahman, M.F., Grantham, C., 2002. Speed Sensorless Vector Controlled Induction Motor Drive with Rotor Time Constant Identification Using Artificial Neural Networks, Intelligent Control, 2002. Proceedings of the 2002 IEEE International Symposium, 715-720.
  • 17. Kim, S.H., Park , T.S., Yoo, J.Y., Park, G.T., 2001. Speed-Sensorless Vector Control of an Induction Motor Using Neural Network Speed Estimation, IEEE Transactions on Industrial Electronics, 48: 609-614.
  • 18. Orlowska-Kowalska, T., Kowalski, C.T., 1997. Neural Network Application for Flux and Speed Estimation in the Sensorless Induction Motor Drive, Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE '97, 1253-1258.
  • 19. Lu., H-C., Hung, T-H., and Tsai, C-H., 2000. Sensorless Vector Control of Indcution Motor Using Artificial Neural Network, ISCAS 2000-IEEE Int. Sym. On Circuits And Systems Geneva, Switzerland, 489-492.
  • 20. Jalili, K., Farhangi, S., and Iranizad, E. S., 2001. Sensorless Vector Control of Induction Motors in Fuel Cell Vehicle Using a Neuro-Fuzzy Speed Controller and an On-Line Artificial Neural Network Speed Estimator, Proc. IEEE Int. Conf. Control Appl., 259-264.
  • 21. Leksono, E., Prihatin, R., Kadiman, K., 2000. Fuzzy Auto Reset Controller for Speed Sensorless Induction Motor Drive, Industrial Electronics Society, 2000. IECON 2000. 26th Annual Conference of the IEEE, 2321-2326.
  • 22. Campbell, J., and Summer, M., 2002. Practical Sensorless Induction Motor Drive Employing an Artificial Neural Network for Online Parameter Adaptation, IEE Proc-Elect. Power Appl., 149 (4): 255-260.
  • 23. Montanari, M., Peresada, S. M., Rossi, C., & Tilli, A, 2007. Speed sensorless control of induction motors based on a reduced-order adaptive observer, IEEE Transactions On Control Systems Technology, 15 (6): 1049-1064.
  • 24. Purwanto, E., Arifin, S., Bian-Sioe So., 2001. Application of Adaptive Neuro Fuzzy Inference System on the Development of the Observer for Speed Sensorless Induction Motor, Electrical and Electronic Technology, 2001. TENCON. Proceedings of IEEE Region 10 International Conference, 409-414.
  • 25. Zhang, J., Morris, A. J., 1995. Fuzzy Neural Networks for Nonlinear Systems Modeling, Proc. Inst. Elect. Eng. Contr. Theory Appl., 142: 551-556.
  • 26. Kwon, Y. A., Kim, S. H., 2004. A New Scheme For Speed-Sensorless Control of Indcution Motor”, IEEE Trans. Ind. Elect., 51 (3): 545-550.
  • 27. Kwon, Y. A., Kim, S. H., and Oh, S. H., 1997. Speed Sensorless Control of Induction Motor by Current Error Compensation, IECON Control and Enst. Conf., 966-970.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section MBD
Authors

Cafer Bal 0000-0002-1199-2637

Muammer Gökbulut 0000-0003-1870-1772

Fikret Ata This is me 0000-0003-1100-6179

Publication Date September 24, 2020
Submission Date March 5, 2020
Published in Issue Year 2020 Volume: 32 Issue: 2

Cite

APA Bal, C., Gökbulut, M., & Ata, F. (2020). Sinirsel Bulanık Ağlarla Asenkron Motorların Algılayıcısız Denetimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 32(2), 457-468. https://doi.org/10.35234/fumbd.699041
AMA Bal C, Gökbulut M, Ata F. Sinirsel Bulanık Ağlarla Asenkron Motorların Algılayıcısız Denetimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. September 2020;32(2):457-468. doi:10.35234/fumbd.699041
Chicago Bal, Cafer, Muammer Gökbulut, and Fikret Ata. “Sinirsel Bulanık Ağlarla Asenkron Motorların Algılayıcısız Denetimi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 32, no. 2 (September 2020): 457-68. https://doi.org/10.35234/fumbd.699041.
EndNote Bal C, Gökbulut M, Ata F (September 1, 2020) Sinirsel Bulanık Ağlarla Asenkron Motorların Algılayıcısız Denetimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 32 2 457–468.
IEEE C. Bal, M. Gökbulut, and F. Ata, “Sinirsel Bulanık Ağlarla Asenkron Motorların Algılayıcısız Denetimi”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 2, pp. 457–468, 2020, doi: 10.35234/fumbd.699041.
ISNAD Bal, Cafer et al. “Sinirsel Bulanık Ağlarla Asenkron Motorların Algılayıcısız Denetimi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 32/2 (September 2020), 457-468. https://doi.org/10.35234/fumbd.699041.
JAMA Bal C, Gökbulut M, Ata F. Sinirsel Bulanık Ağlarla Asenkron Motorların Algılayıcısız Denetimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2020;32:457–468.
MLA Bal, Cafer et al. “Sinirsel Bulanık Ağlarla Asenkron Motorların Algılayıcısız Denetimi”. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 32, no. 2, 2020, pp. 457-68, doi:10.35234/fumbd.699041.
Vancouver Bal C, Gökbulut M, Ata F. Sinirsel Bulanık Ağlarla Asenkron Motorların Algılayıcısız Denetimi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2020;32(2):457-68.