TİCARİ TWIP900 VE DP600 YÜKSEK MUKAVEMETLİ ÇELİKLERİN OTOMOTİV ENDÜSTRİSİNDEKİ PERFORMANSLARININ KARŞILAŞTIRILMASI
Yıl 2016,
, 0 - 0, 06.09.2016
Süleyman Kılıç
,
Fahrettin Öztürk
Öz
Bu çalışmada, otomotiv endüstrisi için yeni bir malzeme olan TWIP900 çeliğinin mekanik ve şekillendirilebilme özellikleri incelenmiştir. TWIP çelikleri yüksek mukavemet değerlerinin yanında yüksek şekillendirilebilirliğinden dolayı otomotiv endüstrisinin ilgisini çekmektedir. Çarpışma esnasında yüksek miktarda enerjiyi sönümlemeleri de önemli bir avantajdır. En büyük dezavantajları ise sac şekillendirme sonrasında ortaya çıkan geri esneme miktarının oldukça yüksek olmasıdır. Bu çalışma kapsamında çekme ve geri esneme deneyleri yapılarak malzeme davranışı incelenmiş ve otomotiv endüstrisinde yaygın kullanıma sahip DP600 çeliği ile karşılaştırma yapılmıştır. Ayrıca her iki malzeme için akma yüzeyi ve şekillendirilebilme sınır diyagramları modellenerek karşılaştırılmıştır. Elde edilen sonuçlardan TWIP çeliğinin hafifletmeye büyük katkı sağlayacağı fakat geri esneme probleminin çözülmesi gerektiği tespit edilmiştir. Sonlu elemanlar yazılımlarında TWIP çelikleri modellenirken Swift modelinin Backofen ve Hollomon modellerine göre daha doğru sonuçlar verdiği görülmüştür.
Kaynakça
- Schumann, V. H., "Martensitische Umwandlung in austenitischen Mangan-Kohlenstoff-Stählen", Neue Hütte, 10, 17, 605-609, 1972.
- Chung, K., Ahn, K., Yoo, D. H., Chung, K. H., Seo, M. H., and Park, S. H., "Formability of TWIP (twinning induced plasticity) automotive sheets", International Journal of Plasticity, 1, 27, 52-81, 2011.
- Dai, Y. J., Tang, D., Mi, Z. L., and Lü, J. C., "Microstructure Characteristics of an Fe-Mn-C TWIP Steel After Deformation", Journal of Iron and Steel Research, International, 9, 17, 53-59, 2010.
- Renard, K. and Jacques, P. J., "On the relationship between work hardening and twinning rate in TWIP steels", Materials Science and Engineering: A, 0, 542, 8-14, 2012.
- Soulami, A., Choi, K. S., Shen, Y. F., Liu, W. N., Sun, X., and Khaleel, M. A., "On deformation twinning in a 17.5% Mn–TWIP steel: A physically based phenomenological model", Materials Science and Engineering: A, 3, 528, 1402-1408, 2011.
- Wang, S. H., Liu, Z. Y., Wang, G. D., Liu, J. L., Liang, G. F., and Li, Q. L., "Effects of Twin-Dislocation and Twin-Twin Interactions on the Strain Hardening Behavior of TWIP Steels", Journal of Iron and Steel Research, International, 12, 17, 70-74, 2010.
- Xu, L., Barlat, F., and Lee, M. G., "Hole expansion of twinning-induced plasticity steel", Scripta Materialia, 12, 66, 1012-1017, 2012.
- Lee, M. G., Kim, D., Kim, C., Wenner, M. L., and Chung, K., "Spring-back evaluation of automotive sheets based on isotropic–kinematic hardening laws and non-quadratic anisotropic yield functions, part III: applications", International Journal of Plasticity, 5, 21, 915-953, 2005.
- Billur, E., Dykeman, J., and Altan, T., "Three generations of advanced high-strength steels for automotive applications”, Part II", Stamping Journal, 2014.
- Hamada, A. S., Karjalainen, L. P., and Somani, M. C., "The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels", Materials Science and Engineering: A, 1–2, 467, 114-124, 2007.
- Chen, L., Kim, H. S., Kim, S. K., and De Cooman, B. C., "Localized Deformation due to Portevin-LeChatelier Effect in 18Mn-0.6C TWIP Austenitic Steel", ISIJ International, 12, 47, 1804-1812, 2007.
- Chung, K., Ma, N., Park, T., Kim, D., Yoo, D., and Kim, C., "A modified damage model for advanced high strength steel sheets", International Journal of Plasticity, 10, 27, 1485-1511, 2011.
- Li, D., Feng, Y., Yin, Z., Shangguan, F., Wang, K., Liu, Q., and Hu, F., "Prediction of hot deformation behaviour of Fe–25Mn–3Si–3Al TWIP steel", Materials Science and Engineering: A, 28, 528, 8084-8089, 2011.
- Vercammen, S., Blanpain, B., De Cooman, B. C., and Wollants, P., "Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning", Acta Materialia, 7, 52, 2005-2012, 2004.
- Xu, S., Ruan, D., Beynon, J. H., and Rong, Y. H., "Dynamic tensile behaviour of TWIP steel under intermediate strain rate loading", Materials Science and Engineering: A, 0, 573, 132-140, 2013.
- Ahn, K., Yoo, D., Seo, M., Park, S. H., and Chung, K., "Springback prediction of TWIP automotive sheets", Metals and Materials International, 4, 15, 637-647, 2009.
- Busch, C., Hatscher, A., Otto, M., Huinink, S., Vucetic, M., Bonk, C., Bouguecha, A., and Behrens, B.-A., "Properties and Application of High-manganese TWIP-steels in Sheet Metal Forming", Procedia Engineering, 81, 939-944, 2014.
- Faccoli, M., Cornacchia, G., Gelfi, M., Panvini, A., and Roberti, R., "Notch ductility of steels for automotive components", Engineering Fracture Mechanics, 127, 181-193, 2014.
- Kilic, S., Ozturk, F., Sigirtmac, T., and Tekin, G., "Effects of Pre-strain and Temperature on Bake Hardening of TWIP900CR Steel", Journal of Iron and Steel Research, International, 4, 22, 361-365, 2015.
- Smith, A., Chen, Z., Lee, J. Y., Lee, M. G., and Wagoner, R. H., "Effective method for fitting complex constitutive equations", International Journal of Plasticity, 58, 100-119, 2014.
- Ozturk, F. and Lee, D., "Analysis of forming limits using ductile fracture criteria", Journal of Materials Processing Technology, 3, 147, 397-404, 2004.
- Ozturk, F., Toros, S., and Kilic, S., "Effects of Anisotropic Yield Functions on Prediction of Forming Limit Diagrams of DP600 Advanced High Strength Steel", Procedia Engineering, 0, 81, 760-765, 2014.
- Ozturk, F., Toros, S., and Kilic, S., "Tensile and Spring-Back Behavior of DP600 Advanced High Strength Steel at Warm Temperatures", Journal of Iron and Steel Research, International, 6, 16, 41-46, 2009.
- Dilmeç, M., Halkaci, H. S., and Özturk, F., "Al 2024-T4 Alaşımının Nakajima testi ile elde edilen şekillendirme sınır eğrisinin minimum majör değerinin ötelenme nedenlerinin incelenmesi", Gazi University, Faculty of Engineering & Architecture 3, 29, 527-536, 2014.
- Marciniak, Z., "Stability of plastic shells under tension with kinematic boundary condition", Archiwum Mechaniki Stosorwanej, 17, 577-592, 1965.
- Marciniak, Z. and Kuczyński, K., "Limit strains in the processes of stretch-forming sheet metal", International Journal of Mechanical Sciences, 9, 9, 609-620, 1967.
- Azrin, M. and Backofen, W., "The deformation and failure of a biaxially stretched sheet", Metallurgical Transactions, 10, 1, 2857-2865, 1970.
- Zhu, X.-K. and Leis, B. N., "Average shear stress yield criterion and its application to plastic collapse analysis of pipelines", International Journal of Pressure Vessels and Piping, 9, 83, 663-671, 2006.
- Fernandes, J. V., Rodrigues, D. M., Menezes, L. F., and Vieira, M. F., "A modified swift law for prestrained materials", International Journal of Plasticity, 6, 14, 537-550, 1998.
- Fields, D. and Backofen, W. Determination of strain hardening characteristics by torsion testing. in Proc. ASTM. 1957.
- Butuc, M. C., Banabic, D., Barata Da Rocha, A., Gracio, J. J., Ferreira Duarte, J., Jurco, P., and Comsa, D. S., "The performance of Yld96 and BBC2000 yield functions in forming limit prediction", Journal of Materials Processing Technology, 125–126, 281-286, 2002.
- Cao, J., Yao, H., Karafillis, A., and Boyce, M. C., "Prediction of localized thinning in sheet metal using a general anisotropic yield criterion", International Journal of Plasticity, 9, 16, 1105-1129, 2000.
- Yao, H. and Cao, J., "Prediction of forming limit curves using an anisotropic yield function with prestrain induced backstress", International Journal of Plasticity, 8, 18, 1013-1038, 2002.
- Li, X., Guo, G., Xiao, J., Song, N., and Li, D., "Constitutive modeling and the effects of strain-rate and temperature on the formability of Ti–6Al–4V alloy sheet", Materials & Design, 55, 325-334, 2014.