BibTex RIS Kaynak Göster

MİKROALGLERDEN YENİLENEBİLİR BİYOYAKIT ÜRETİMİ

Yıl 2017, , 0 - 0, 07.09.2017
https://doi.org/10.17341/gazimmfd.337627

Öz

Enerji ihtiyacının büyük bir bölümünü karşılayan fosil yakıt rezervleri hızla tükenmektedir ve bu yakıtların çevresel zararları her geçen gün artmaktadır. Bu sebeple, tüm gelişmiş ve gelişmekte olan ülkeler gibi ülkemiz de yenilenebilir enerji kaynaklarının kullanımına yönelmiştir. Bu kapsamda ülkemizde, yenilenebilir enerji yasası çıkarılarak yenilenebilir enerji kaynaklarının ekonomiye kazandırılması, sürdürülebilir enerji üretiminin desteklenmesi ve çevrenin korunması amaçlanmıştır. Son dönemde önemi artan yenilenebilir enerji kaynaklarından bir tanesi de biyokütle enerjisidir. Biyokütle enerji kaynağı olarak, ana bileşenleri karbonhidrat bileşikleri olan bitkisel ve hayvansal kökenli tüm organik maddeler kullanılabilmektedir. Bu enerji kaynakları içerisinde mikroalgler, yüksek fotosentetik etkinlikleri, yüksek biyokütle üretimleri ve hızlı çoğalmaları gibi avantajlarıyla biyoyakıt üretimi için umut verici görülmektedir. Mikroalglerden, biyokimyasal yöntemler ile elektrik, etanol, hidrojen, metan ve biyoyağ üretilebildiği gibi termokimyasal yöntemler kullanılarak singaz, biyoyağ ve elektrik üretilebilmektedir. Bu derleme makalesinde, mikroalglerin izolasyonu, mikroalgal biyokütle üretimi, biyokütlenin hasadında kullanılan yöntemler ve mikroalglerin yenilenebilir biyoyakıtlar için ham madde kaynağı olarak kullanılabilirliği ele alınmıştır.

Kaynakça

  • Gülüm, M., Bilgin, A. ve Çakmak, A., “Sodyum Hidroksit (NaOH) Ve Potasyum Hidroksit (KOH) Kullanılarak Üretilen Mısır Yağı Biyodizellerinin Optimum Reaksiyon Parametrelerinin Karşılaştırılması”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 30, No 3, 2015.
  • Genç, N., “Atıkların Biyohidrojen Üretim Potansiyellerinin Değerlendirilmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 17, No 2, 63-77, 2011.
  • Amponsah, N.Y., Troldborg, M., Kington, B., Aalders, I. ve Hough, R.L., “Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations”, Renewable and Sustainable Energy Reviews, Cilt 39, No 0, 461-475, 2014.
  • Singh, B., Guldhe, A., Rawat, I. ve Bux, F., “Towards a sustainable approach for development of biodiesel from plant and microalgae”, Renewable and Sustainable Energy Reviews, Cilt 29, No 0, 216-245, 2014.
  • Boz, N., “Kanola Yağından Metil Ester Üretimi İçin Kalsiyum Oksit Destekli Heterojen Katalizör Tasarımı”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 30, No 4, 2015.
  • Christenson, L. ve Sims, R., “Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts”, Biotechnology Advances, Cilt 29, No 6, 686-702, 2011.
  • Pragya, N., Pandey, K.K. ve Sahoo, P.K., “A review on harvesting, oil extraction and biofuels production technologies from microalgae”, Renewable and Sustainable Energy Reviews, Cilt 24, No 0, 159-171, 2013.
  • Rashid, N., Ur Rehman, M.S., Sadiq, M., Mahmood, T. ve Han, J.-I., “Current status, issues and developments in microalgae derived biodiesel production”, Renewable and Sustainable Energy Reviews, Cilt 40, 760-778, 2014.
  • Lakaniemi, A.M., Microalgal Cultivation and Utilization in Sustainable Energy Production, Ph. D., Tampere University of Technology, 2012.
  • Farooq, W., Suh, W.I., Park, M.S. ve Yang, J.-W., “Water use and its recycling in microalgae cultivation for biofuel application”, Bioresource Technology, Cilt 184, 73-81, 2015.
  • Chisti, Y., “Biodiesel from microalgae”, Biotechnology Advances, Cilt 25, No 3, 294-306, 2007.
  • Suali, E. ve Sarbatly, R., “Conversion of microalgae to biofuel”, Renewable and Sustainable Energy Reviews, Cilt 16, No 6, 4316-4342, 2012.
  • Bahadar, A. ve Bilal Khan, M., “Progress in energy from microalgae: A review”, Renewable and Sustainable Energy Reviews, Cilt 27, No 0, 128-148, 2013.
  • Huber, G.W., Iborra, S. ve Corma, A., “Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering”, Chemical Reviews, Cilt 106, No 9, 4044-4098, 2006.
  • Zhu, L., “Biorefinery as a promising approach to promote microalgae industry: An innovative framework”, Renewable and Sustainable Energy Reviews, Cilt 41, 1376-1384, 2015.
  • Mata, T.M., Martins, A.A. ve Caetano, N.S., “Microalgae for biodiesel production and other applications: A review”, Renewable & Sustainable Energy Reviews, Cilt 14, No 1, 217-232, 2010.
  • Singh, A., Nigam, P.S. ve Murphy, J.D., “Mechanism and challenges in commercialisation of algal biofuels”, Bioresource Technology, Cilt 102, No 1, 26-34, 2011.
  • Medeiros, D.L., Sales, E.A. ve Kiperstok, A., “Energy production from microalgae biomass: carbon footprint and energy balance”, Journal of Cleaner Production, Cilt 96, 493-500, 2015.
  • Xu, M., Bernards, M. ve Hu, Z., “Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor”, Bioresource Technology, Cilt 153, No 0, 383-387, 2014.
  • Kobayashi, M., Kakizono, T., Yamaguchi, K., Nishio, N. ve Nagai, S., “Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions”, Journal of Fermentation and Bioengineering, Cilt 74, No 1, 17-20, 1992.
  • Wang, H., Xiong, H., Hui, Z. ve Zeng, X., “Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids”, Bioresource Technology, Cilt 104, 215-220, 2012.
  • Mitra, D., van Leeuwen, J. ve Lamsal, B., “Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products”, Algal Research, Cilt 1, No 1, 40-48, 2012.
  • Kim, S., Park, J.-e., Cho, Y.-B. ve Hwang, S.-J., “Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions”, Bioresource Technology, Cilt 144, 8-13, 2013.
  • Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J. ve Chang, J.-S., “Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review”, Bioresource Technology, Cilt 102, No 1, 71-81, 2011.
  • Abreu, A.P., Fernandes, B., Vicente, A.A., Teixeira, J. ve Dragone, G., “Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source”, Bioresource Technology, Cilt 118, No 0, 61-66, 2012.
  • Yeh, K.-L., Chang, J.-S. ve Chen, W.-m., “Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31”, Engineering in Life Sciences, Cilt 10, No 3, 201-208, 2010.
  • Bruton, T., Lyons, H., Lerat, Y., Stanley, M. ve Rasmussen, M.B., A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland. 2009: Ireland. p. 0-88.
  • Becker, E.W., “Micro-algae as a source of protein”, Biotechnology Advances, Cilt 25, No 2, 207-210, 2007.
  • Knuckey, R.M., Brown, M.R., Barrett, S.M. ve Hallegraeff, G.M., “Isolation of new nanoplanktonic diatom strains and their evaluation as diets for juvenile Pacific oysters (Crassostrea gigas)”, Aquaculture, Cilt 211, No 1–4, 253-274, 2002.
  • Miao, X. ve Wu, Q., “High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides”, Journal of Biotechnology, Cilt 110, No 1, 85-93, 2004.
  • Carioca, J.O.B., Hiluy Filho, J.J., Leal, M.R.L.V. ve Macambira, F.S., “The hard choice for alternative biofuels to diesel in Brazil”, Biotechnology Advances, Cilt 27, No 6, 1043-1050, 2009.
  • Razzak, S.A., Hossain, M.M., Lucky, R.A., Bassi, A.S. ve de Lasa, H., “Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review”, Renewable and Sustainable Energy Reviews, Cilt 27, 622-653, 2013.
  • Hariskos, I. ve Posten, C., “Biorefinery of microalgae - opportunities and constraints for different production scenarios”, Biotechnology Journal, Cilt 9, No 6, 739-752, 2014.
  • Spolaore, P., Joannis-Cassan, C., Duran, E. ve Isambert, A., “Commercial applications of microalgae”, Journal of Bioscience and Bioengineering, Cilt 101, No 2, 87-96, 2006.
  • Ho, S.-H., Nakanishi, A., Ye, X., Chang, J.-S., Hara, K., Hasunuma, T. ve Kondo, A., “Optimizing biodiesel production in marine Chlamydomonas sp JSC4 through metabolic profiling and an innovative salinity-gradient strategy”, Biotechnology for Biofuels, Cilt 7, 2014.
  • Borowitzka, M.A. ve Moheimani, N.R., Algae for Biofuels and Energy, Springer, 978-94-007-5479-9, India, 2013.
  • Cohn, F., “Zur Naturgeschichte des Protococcus pluvialis Kützing”, Nova Acta Academia Leopoldensis Caroliensis, Cilt 22, 607, 1850.
  • Famintzin, A., “Die anorganischen Salze als ausgezeichneted Hülfsmittel zum Studium der Entwicklung niederer chlorophyllhaltiger Organismen”, Bull Acad Sci St Petersburg, Cilt 17, 31-70, 1871.
  • Beijerinck, M.W., “Kulturversuche mit Zoochloren, Lichenengonidien und anderen niederen Algen”, Bot Z, Cilt 48, 725-785, 1890.
  • Harder, R. ve von Witsch, H., “Bericht über Versuche zur Fettsynthese mittels autotropher Microorganismen”, Forschungsdienst Sonderheft, Cilt 16, 270-275, 1942a.
  • Harder, R. ve von Witsch, H., “Die Massenkultur von Diatomeen”, Ber Deutsch Bot Ges, Cilt 60, 146-152, 1942b.
  • Milner, H.W., “Possibilities in photosynthetic methods for production of oils and proteins”, JAOCS, Cilt 28, 363-367, 1951.
  • Aach, H.G., “Über Wachstum und Zusammensetzung von Chlorella pyrenoidosa bei unterschiedlichen Lichtstärken und Nitratmengen”, Arch Mikrobiol, Cilt 17, 213-246, 1952.
  • Oswald, W.J., Gotaas, H.B., Golueke, C.G. ve Kellen, W.R., “Algae in waste treatment”, Sewage Wastes, Cilt 29, 437-457, 1957.
  • Oswald, W.J. ve Golueke, C.G., “Biological transformation of solar energy”, Advances in applied microbiology, Cilt 2, 223-262, 1960.
  • Farrar, W.V., “Tecuitlatl: a glimpse of Aztec food technology”, Nature, Cilt 211, 341-342, 1966.
  • Johnston, H.W., “The Biological and Economic Importance of Algae, Part 3. Edible Algae of Fresh and Brackish Waters”, Tuatara, Cilt 18, 19-24, 1970.
  • Ciferri, O., “Spirulina , the edible microorganism”, Microbiol Rev, Cilt 47, 551-578, 1983.
  • Deng, X., Li, Y. ve Fei, X., “Microalgae: A promising feedstock for biodiesel”, African Journal of Microbiology Research, Cilt 3, No 13, 1008-1014, 2009.
  • Chisti, Y. ve Yan, J., “Energy from algae: Current status and future trends: Algal biofuels – A status report”, Applied Energy, Cilt 88, No 10, 3277-3279, 2011.
  • Gendy, T.S. ve El-Temtamy, S.A., “Commercialization potential aspects of microalgae for biofuel production: An overview”, Egyptian Journal of Petroleum, Cilt 22, No 1, 43-51, 2013.
  • Singh, J. ve Gu, S., “Commercialization potential of microalgae for biofuels production”, Renewable and Sustainable Energy Reviews, Cilt 14, No 9, 2596-2610, 2010.
  • Rawat, I., Ranjith Kumar, R., Mutanda, T. ve Bux, F., “Biodiesel from microalgae: A critical evaluation from laboratory to large scale production”, Applied Energy, Cilt 103, 444-467, 2013.
  • Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A. ve Bux, F., “Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production”, Bioresource Technology, Cilt 102, No 1, 57-70, 2011.
  • Zhu, J., Rong, J. ve Zong, B., “Factors in mass cultivation of microalgae for biodiesel”, Chinese Journal of Catalysis, Cilt 34, No 1, 80-100, 2013.
  • Blanken, W., Cuaresma, M., Wijffels, R.H. ve Janssen, M., “Cultivation of microalgae on artificial light comes at a cost”, Algal Research, Cilt 2, No 4, 333-340, 2013.
  • Hidaka, T., Inoue, K., Suzuki, Y. ve Tsumori, J., “Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage”, Bioresource Technology, Cilt 170, 83-89, 2014.
  • Samorì, G., Samorì, C., Guerrini, F. ve Pistocchi, R., “Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I”, Water Research, Cilt 47, No 2, 791-801, 2013.
  • de Morais, M.G. ve Costa, J.A.V., “Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide”, Energy Conversion and Management, Cilt 48, No 7, 2169-2173, 2007.
  • Brennan, L. ve Owende, P., “Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products”, Renewable and Sustainable Energy Reviews, Cilt 14, No 2, 557-577, 2010.
  • Chiu, S.-Y., Kao, C.-Y., Tsai, M.-T., Ong, S.-C., Chen, C.-H. ve Lin, C.-S., “Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration”, Bioresource Technology, Cilt 100, No 2, 833-838, 2009.
  • Widjaja, A., Chien, C.-C. ve Ju, Y.-H., “Study of increasing lipid production from fresh water microalgae Chlorella vulgaris”, Journal of the Taiwan Institute of Chemical Engineers, Cilt 40, No 1, 13-20, 2009.
  • Cheirsilp, B. ve Torpee, S., “Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation”, Bioresource Technology, Cilt 110, 510-516, 2012.
  • Blair, M.F., Kokabian, B. ve Gude, V.G., “Light and growth medium effect on Chlorella vulgaris biomass production”, Journal of Environmental Chemical Engineering, Cilt 2, No 1, 665-674, 2014.
  • Gonçalves, A.L., Simões, M. ve Pires, J.C.M., “The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater”, Energy Conversion and Management, Cilt 85, No 0, 530-536, 2014.
  • Zeng, X., Danquah, M.K., Chen, X.D. ve Lu, Y., “Microalgae bioengineering: From CO2 fixation to biofuel production”, Renewable and Sustainable Energy Reviews, Cilt 15, No 6, 3252-3260, 2011.
  • Kim, T.-H., Lee, Y., Han, S.-H. ve Hwang, S.-J., “The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment”, Bioresource Technology, Cilt 130, 75-80, 2013.
  • Teo, C.L., Atta, M., Bukhari, A., Taisir, M., Yusuf, A.M. ve Idris, A., “Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths”, Bioresource Technology, Cilt 162, 38-44, 2014.
  • Gris, B., Morosinotto, T., Giacometti, G.M., Bertucco, A. ve Sforza, E., “Cultivation of Scenedesmus obliquus in Photobioreactors: Effects of Light Intensities and Light-Dark Cycles on Growth, Productivity, and Biochemical Composition”, Applied Biochemistry and Biotechnology, Cilt 172, No 5, 2377-2389, 2014.
  • Sharma, Y.C., Singh, B. ve Korstad, J., “A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel”, Green Chemistry, Cilt 13, No 11, 2993-3006, 2011.
  • George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T. ve Mishra, S., “Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – A potential strain for bio-fuel production”, Bioresource Technology, Cilt 171, 367-374, 2014.
  • Wahidin, S., Idris, A. ve Shaleh, S.R.M., “The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp”, Bioresource Technology, Cilt 129, 7-11, 2013.
  • Lee, C.S., Lee, S.-A., Ko, S.-R., Oh, H.-M. ve Ahn, C.-Y., “Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater”, Water Research, Cilt 68, 680-691, 2015.
  • Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C. ve Perales, J.A., “Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production”, Water Research, Cilt 49, 465-474, 2014.
  • Goiris, K., Van Colen, W., Wilches, I., León-Tamariz, F., De Cooman, L. ve Muylaert, K., “Impact of nutrient stress on antioxidant production in three species of microalgae”, Algal Research, Cilt 7, 51-57, 2015.
  • Ummalyma, S.B. ve Sukumaran, R.K., “Cultivation of microalgae in dairy effluent for oil production and removal of organic pollution load”, Bioresource Technology, Cilt 165, 295-301, 2014.
  • Ji, F., Liu, Y., Hao, R., Li, G., Zhou, Y. ve Dong, R., “Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater”, Bioresource Technology, Cilt 161, 200-207, 2014.
  • Chen, F., Liu, Z., Li, D., Liu, C., Zheng, P. ve Chen, S., “Using ammonia for algae harvesting and as nutrient in subsequent cultures”, Bioresource Technology, Cilt 121, 298-303, 2012.
  • Nautiyal, P., Subramanian, K.A. ve Dastidar, M.G., “Production and characterization of biodiesel from algae”, Fuel Processing Technology, Cilt 120, 79-88, 2014.
  • Ashokkumar, V., Agila, E., Sivakumar, P., Salam, Z., Rengasamy, R. ve Ani, F.N., “Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system”, Energy Conversion and Management, Cilt 88, 936-946, 2014.
  • Raeesossadati, M.J., Ahmadzadeh, H., McHenry, M.P. ve Moheimani, N.R., “CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature”, Algal Research, Cilt 6, Part A, 78-85, 2014.
  • Muñoz, R. ve Guieysse, B., “Algal–bacterial processes for the treatment of hazardous contaminants: A review”, Water Research, Cilt 40, No 15, 2799-2815, 2006.
  • Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F.X. ve van Langenhove, H., “Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions”, Trends in Biotechnology, Cilt 28, No 7, 371-380, 2010.
  • Wang, B., Li, Y., Wu, N. ve Lan, C.Q., “CO(2) bio-mitigation using microalgae”, Applied Microbiology and Biotechnology, Cilt 79, No 5, 707-718, 2008.
  • Venkata Subhash, G., Rohit, M.V., Devi, M.P., Swamy, Y.V. ve Venkata Mohan, S., “Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater”, Bioresource Technology, Cilt 169, 789-793, 2014.
  • Sakamoto, T. ve Bryant, D.A., “Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002”, Archives of Microbiology, Cilt 169, No 1, 10-19, 1998.
  • Chokshi, K., Pancha, I., Trivedi, K., George, B., Maurya, R., Ghosh, A. ve Mishra, S., “Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions”, Bioresource Technology, Cilt 180, 162-171, 2015.
  • Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P. ve Del Borghi, M., “Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production”, Chemical Engineering and Processing: Process Intensification, Cilt 48, No 6, 1146-1151, 2009.
  • Cho, S., Lee, N., Park, S., Yu, J., Luong, T.T., Oh, Y.-K. ve Lee, T., “Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources”, Bioresource Technology, Cilt 131, 515-520, 2013.
  • Ranga Rao, A., Ravishankar, G.A. ve Sarada, R., “Cultivation of green alga Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production”, Bioresource Technology, Cilt 123, 528-533, 2012.
  • Zhu, L.D., Takala, J., Hiltunen, E. ve Wang, Z.M., “Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production”, Bioresource Technology, Cilt 144, 14-20, 2013.
  • de Gouvion Saint Cyr, D., Wisniewski, C., Schrive, L., Farhi, E. ve Rivasseau, C., “Feasibility study of microfiltration for algae separation in an innovative nuclear effluents decontamination process”, Separation and Purification Technology, Cilt 125, 126-135, 2014.
  • Guo, Z., Liu, Y., Guo, H., Yan, S. ve Mu, J., “Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production”, Journal of Environmental Sciences, Cilt 25, Supplement 1, S85-S88, 2013.
  • Araujo, G.S., Matos, L.J.B.L., Fernandes, J.O., Cartaxo, S.J.M., Gonçalves, L.R.B., Fernandes, F.A.N. ve Farias, W.R.L., “Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method”, Ultrasonics Sonochemistry, Cilt 20, No 1, 95-98, 2013.
  • Nayak, B.K. ve Das, D., “Improvement of carbon dioxide biofixation in a photobioreactor using Anabaena sp. PCC 7120”, Process Biochemistry, Cilt 48, No 8, 1126-1132, 2013.
  • Li, Y.-R., Tsai, W.-T., Hsu, Y.-C., Xie, M.-Z. ve Chen, J.-J., “Comparison of Autotrophic and Mixotrophic Cultivation of Green Microalgal for Biodiesel Production”, Energy Procedia, Cilt 52, 371-376, 2014.
  • Mata, T.M., Melo, A.C., Meireles, S., Mendes, A.M., Martins, A.A. ve Caetano, N.S., “Potential of Microalgae Scenedesmus obliquus Grown in Brewery Wastewater for Biodiesel Production”, Icheap-11: 11th International Conference on Chemical and Process Engineering, Pts 1-4, Cilt 32, 901-906, 2013.
  • Renaud, S.M., Thinh, L.-V., Lambrinidis, G. ve Parry, D.L., “Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures”, Aquaculture, Cilt 211, No 1–4, 195-214, 2002.
  • Wu, L.F., Chen, P.C. ve Lee, C.M., “The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae”, International Biodeterioration & Biodegradation, Cilt 85, 506-510, 2013.
  • Ramaraj, R., Tsai, D.D.-W. ve Chen, P.H., “Carbon dioxide fixation of freshwater microalgae growth on natural water medium”, Ecological Engineering, Cilt 75, 86-92, 2015.
  • Mirón, A.S., Garcı́a, M.C.C., Gómez, A.C., Camacho, F.G.a., Grima, E.M. ve Chisti, Y., “Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors”, Biochemical Engineering Journal, Cilt 16, No 3, 287-297, 2003.
  • Song, W., Rashid, N., Choi, W. ve Lee, K., “Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis”, Bioresource Technology, Cilt 102, No 18, 8676-8681, 2011.
  • Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R. ve Mishra, S., “Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077”, Bioresource Technology, Cilt 156, 146-154, 2014.
  • Courchesne, N.M.D., Parisien, A., Wang, B. ve Lan, C.Q., “Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches”, Journal of Biotechnology, Cilt 141, No 1–2, 31-41, 2009.
  • Gao, Y., Yang, M. ve Wang, C., “Nutrient deprivation enhances lipid content in marine microalgae”, Bioresource Technology, Cilt 147, 484-491, 2013.
  • Radakovits, R., Jinkerson, R.E., Darzins, A. ve Posewitz, M.C., “Genetic Engineering of Algae for Enhanced Biofuel Production”, Eukaryotic Cell, Cilt 9, No 4, 486-501, 2010.
  • Zhila, N.O., Kalacheva, G.S. ve Volova, T.G., “Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus”, Journal of Applied Phycology, Cilt 17, No 4, 309-315, 2005.
  • Guo, F., Wang, H., Wang, J., Zhou, W., Gao, L., Chen, L., Dong, Q., Zhang, W. ve Liu, T., “Special biochemical responses to nitrogen deprivation of filamentous oleaginous microalgae Tribonema sp”, Bioresource Technology, Cilt 158, 19-24, 2014.
  • Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O. ve Hankamer, B., “Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production”, Bioenergy Research, Cilt 1, No 1, 20-43, 2008.
  • Breuer, G., Lamers, P.P., Martens, D.E., Draaisma, R.B. ve Wijffels, R.H., “The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains”, Bioresource Technology, Cilt 124, 217-226, 2012.
  • Ruiz-Martinez, A., Serralta, J., Pachés, M., Seco, A. ve Ferrer, J., “Mixed microalgae culture for ammonium removal in the absence of phosphorus: Effect of phosphorus supplementation and process modeling”, Process Biochemistry, Cilt 49, No 12, 2249-2257, 2014.
  • Singh, P., Guldhe, A., Kumari, S., Rawat, I. ve Bux, F., “Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology”, Biochemical Engineering Journal, Cilt 94, 22-29, 2015.
  • Liang, K., Zhang, Q., Gu, M. ve Cong, W., “Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp”, Journal of Applied Phycology, Cilt 25, No 1, 311-318, 2013.
  • Cai, T., Park, S.Y. ve Li, Y.B., “Nutrient recovery from wastewater streams by microalgae: Status and prospects”, Renewable & Sustainable Energy Reviews, Cilt 19, 360-369, 2013.
  • Laliberté, G., Lessard, P., de la Noüe, J. ve Sylvestre, S., “Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri”, Bioresource Technology, Cilt 59, No 2–3, 227-233, 1997.
  • Feng, P., Deng, Z., Fan, L. ve Hu, Z., “Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations”, Journal of Bioscience and Bioengineering, Cilt 114, No 4, 405-410, 2012.
  • Islam, M.A., Magnusson, M., Brown, R.J., Ayoko, G.A., Nabi, M.N. ve Heimann, K., “Microalgal Species Selection for Biodiesel Production Based on Fuel Properties Derived from Fatty Acid Profiles”, Energies, Cilt 6, No 11, 5676-5702, 2013.
  • Teo, S.H., Islam, A., Yusaf, T. ve Taufiq-Yap, Y.H., “Transesterification of Nannochloropsis oculata microalga's oil to biodiesel using calcium methoxide catalyst”, Energy, Cilt 78, 63-71, 2014.
  • Boussiba, S., Vonshak, A., Cohen, Z., Avissar, Y. ve Richmond, A., “Lipid and Biomass Production by The Halotolerant Microalga Nannochloropsıs-Salina”, Biomass, Cilt 12, No 1, 37-47, 1987.
  • Ebrahimian, A., Kariminia, H.-R. ve Vosoughi, M., “Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater”, Renewable Energy, Cilt 71, 502-508, 2014.
  • Jayappriyan, K.R., Rajkumar, R., Venkatakrishnan, V., Nagaraj, S. ve Rengasamy, R., “In vitro anticancer activity of natural β-carotene from Dunaliella salina EU5891199 in PC-3 cells”, Biomedicine & Preventive Nutrition, Cilt 3, No 2, 99-105, 2013.
  • Zhang, L., Chen, L., Wang, J., Chen, Y., Gao, X., Zhang, Z. ve Liu, T., “Attached cultivation for improving the biomass productivity of Spirulina platensis”, Bioresource Technology, Cilt 181, 136-142, 2015.
  • Chan, M.-C., Ho, S.-H., Lee, D.-J., Chen, C.-Y., Huang, C.-C. ve Chang, J.-S., “Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N”, Biochemical Engineering Journal, Cilt 78, 24-31, 2013.
  • Chiang, C.-L., Lee, C.-M. ve Chen, P.-C., “Utilization of the cyanobacteria Anabaena sp. CH1 in biological carbon dioxide mitigation processes”, Bioresource Technology, Cilt 102, No 9, 5400-5405, 2011.
  • Michels, M.H.A., Camacho-Rodríguez, J., Vermuë, M.H. ve Wijffels, R.H., “Effect of cooling in the night on the productivity and biochemical composition of Tetraselmis suecica”, Algal Research, Cilt 6, Part B, 145-151, 2014.
  • Lavens, P. ve Sorgeloos, P., Manual on the Production and Use of Live Food for Aquaculture. 1996, University of Ghent: Ghent, Belgium.
  • Katarzyna, L., Sai, G. ve Singh, O.A., “Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs”, Renewable and Sustainable Energy Reviews, Cilt 42, 1418-1427, 2015.
  • Eriksen, N.T., “The technology of microalgal culturing”, Biotechnology Letters, Cilt 30, No 9, 1525-1536, 2008.
  • Pawlowski, A., Mendoza, J.L., Guzmán, J.L., Berenguel, M., Acién, F.G. ve Dormido, S., “Effective utilization of flue gases in raceway reactor with event-based pH control for microalgae culture”, Bioresource Technology, Cilt 170, 1-9, 2014.
  • De Bhowmick, G., Subramanian, G., Mishra, S. ve Sen, R., “Raceway pond cultivation of a marine microalga of Indian origin for biomass and lipid production: A case study”, Algal Research, Cilt 6, Part B, 201-209, 2014.
  • Komolafe, O., Velasquez Orta, S.B., Monje-Ramirez, I., Noguez, I.Y., Harvey, A.P. ve Orta Ledesma, M.T., “Biodiesel production from indigenous microalgae grown in wastewater”, Bioresource Technology, Cilt 154, 297-304, 2014.
  • Bartley, M.L., Boeing, W.J., Corcoran, A.A., Holguin, F.O. ve Schaub, T., “Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms”, Biomass and Bioenergy, Cilt 54, 83-88, 2013.
  • Shaleh, S.R.M., Optimum Growth Parameters for Both Indoor and Outdoor Propagation of Microalgae, Chlorella vulgaris and Isochrysis galbana, Universiti Putra Malaysia, Science 2004.
  • Fathi, M. ve Asem, A., “Investigating the impact of NaCl salinity on growth, β-carotene, and chlorophyll a in the content life of halophytes of algae Chlorella sp.”, AACL Bioflux, Cilt 6, No 3, 241-245, 2013.
  • Abu-Rezq, T.S., Al-Musallam, L., Al-Shimmari, J. ve Dias, P., “Optimum production conditions for different high-quality marine algae”, Hydrobiologia, Cilt 403, 97-107, 1999.
  • Oncel, S.S., “Microalgae for a macroenergy world”, Renewable and Sustainable Energy Reviews, Cilt 26, 241-264, 2013.
  • Ruangsomboon, S., “Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2”, Bioresource Technology, Cilt 109, 261-265, 2012.
  • Khan, S.A., Rashmi, Hussain, M.Z., Prasad, S. ve Banerjee, U.C., “Prospects of biodiesel production from microalgae in India”, Renewable and Sustainable Energy Reviews, Cilt 13, No 9, 2361-2372, 2009.
  • Demirbas, A., “Use of algae as biofuel sources”, Energy Conversion and Management, Cilt 51, No 12, 2738-2749, 2010.
  • Sánchez Mirón, A., Contreras Gómez, A., Garcı́a Camacho, F., Molina Grima, E. ve Chisti, Y., “Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae”, Journal of Biotechnology, Cilt 70, No 1–3, 249-270, 1999.
  • Molina, E., Fernández, J., Acién, F.G. ve Chisti, Y., “Tubular photobioreactor design for algal cultures”, Journal of Biotechnology, Cilt 92, No 2, 113-131, 2001.
  • Watanabe, Y. ve Saiki, H., “Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas”, Energy Conversion and Management, Cilt 38, Supplement, S499-S503, 1997.
  • Ugwu, C.U., Ogbonna, J.C. ve Tanaka, H., “Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers”, Applied Microbiology and Biotechnology, Cilt 58, No 5, 600-607, 2002.
  • Zhang, X., Zhou, B.C., Zhang, Y.P., Cai, Z.L., Cong, W. ve Fan, O.Y., “A simple and low-cost airlift photobioreactor for microalgal mass culture”, Biotechnology Letters, Cilt 24, No 21, 1767-1771, 2002.
  • Huntley, M.E. ve Redalje, D.G., “CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal”, Mitigation and Adaptation Strategies for Global Change Cilt 12, No 4, 573-608, 2006.
  • Sato, T., Usui, S., Tsuchiya, Y. ve Kondo, Y., “Invention of outdoor closed type photobioreactor for microalgae”, Energy Conversion and Management, Cilt 47, No 6, 791-799, 2006.
  • Chini Zittelli, G., Rodolfi, L., Biondi, N. ve Tredici, M.R., “Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns”, Aquaculture, Cilt 261, No 3, 932-943, 2006.
  • Ge, Y., Liu, J. ve Tian, G., “Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor”, Bioresource Technology, Cilt 102, No 1, 130-134, 2011.
  • Acién Fernández, F.G., Fernández Sevilla, J.M., Sánchez Pérez, J.A., Molina Grima, E. ve Chisti, Y., “Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance”, Chemical Engineering Science, Cilt 56, No 8, 2721-2732, 2001.
  • López, M.C.G.-M., Sánchez, E.D.R., López, J.L.C., Fernández, F.G.A., Sevilla, J.M.F., Rivas, J., Guerrero, M.G. ve Grima, E.M., “Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors”, Journal of Biotechnology, Cilt 123, No 3, 329-342, 2006.
  • Masojidek, J., Papacek, S., Sergejevova, M., Jirka, V., Cerveny, J., Kunc, J., Korecko, J., Verbovikova, O., Kopecky, J., Stys, D. ve Torzillo, G., “A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: basic design and performance”, Journal of Applied Phycology, Cilt 15, No 2-3, 239-248, 2003.
  • da Silva, T.L., Reis, A., Medeiros, R., Oliveira, A.C. ve Gouveia, L., “Oil Production Towards Biofuel from Autotrophic Microalgae Semicontinuous Cultivations Monitorized by Flow Cytometry”, Applied Biochemistry and Biotechnology, Cilt 159, No 2, 568-578, 2009.
  • Uduman, N., Qi, Y., Danquah, M.K., Forde, G.M. ve Hoadley, A., “Dewatering of microalgal cultures: A major bottleneck to algae-based fuels”, Journal of Renewable and Sustainable Energy, Cilt 2, No 1, 2010.
  • Barros, A.I., Gonçalves, A.L., Simões, M. ve Pires, J.C.M., “Harvesting techniques applied to microalgae: A review”, Renewable and Sustainable Energy Reviews, Cilt 41, 1489-1500, 2015.
  • Molina Grima, E., Belarbi, E.H., Acién Fernández, F.G., Robles Medina, A. ve Chisti, Y., “Recovery of microalgal biomass and metabolites: process options and economics”, Biotechnology Advances, Cilt 20, No 7–8, 491-515, 2003.
  • Danquah, M.K., Gladman, B., Moheimani, N. ve Forde, G.M., “Microalgal growth characteristics and subsequent influence on dewatering efficiency”, Chemical Engineering Journal, Cilt 151, No 1–3, 73-78, 2009.
  • Rawat, I., Ranjith Kumar, R., Mutanda, T. ve Bux, F., “Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production”, Applied Energy, Cilt 88, No 10, 3411-3424, 2011.
  • Zhang, X., Hu, Q., Sommerfeld, M., Puruhito, E. ve Chen, Y., “Harvesting algal biomass for biofuels using ultrafiltration membranes”, Bioresource Technology, Cilt 101, No 14, 5297-5304, 2010.
  • Zhang, W., Zhang, W., Zhang, X., Amendola, P., Hu, Q. ve Chen, Y., “Characterization of dissolved organic matters responsible for ultrafiltration membrane fouling in algal harvesting”, Algal Research, Cilt 2, No 3, 223-229, 2013.
  • Schlesinger, A., Eisenstadt, D., Bar-Gil, A., Carmely, H., Einbinder, S. ve Gressel, J., “Inexpensive non-toxic flocculation of microalgae contradicts theories; overcoming a major hurdle to bulk algal production”, Biotechnology Advances, Cilt 30, No 5, 1023-1030, 2012.
  • Vandamme, D., Foubert, I. ve Muylaert, K., “Flocculation as a low-cost method for harvesting microalgae for bulk biomass production”, Trends in Biotechnology, Cilt 31, No 4, 233-239, 2013.
  • Papazi, A., Makridis, P. ve Divanach, P., “Harvesting Chlorella minutissima using cell coagulants”, Journal of Applied Phycology, Cilt 22, No 3, 349-355, 2010.
  • Xu, Y., Purton, S. ve Baganz, F., “Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana”, Bioresource Technology, Cilt 129, 296-301, 2013.
  • Kurniawati, H.A., Ismadji, S. ve Liu, J.C., “Microalgae harvesting by flotation using natural saponin and chitosan”, Bioresource Technology, Cilt 166, 429-434, 2014.
  • Beach, E.S., Eckelman, M.J., Cui, Z., Brentner, L. ve Zimmerman, J.B., “Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans”, Bioresource Technology, Cilt 121, 445-449, 2012.
  • Renault, F., Sancey, B., Badot, P.M. ve Crini, G., “Chitosan for coagulation/flocculation processes – An eco-friendly approach”, European Polymer Journal, Cilt 45, No 5, 1337-1348, 2009.
  • Rashid, N., Rehman, M.S.U. ve Han, J.-I., “Use of chitosan acid solutions to improve separation efficiency for harvesting of the microalga Chlorella vulgaris”, Chemical Engineering Journal, Cilt 226, 238-242, 2013.
  • Salim, S., Bosma, R., Vermuë, M.H. ve Wijffels, R.H., “Harvesting of microalgae by bio-flocculation”, J Appl Phycol, Cilt 23, 849-855, 2011.
  • Hanotu, J., Bandulasena, H.C.H. ve Zimmerman, W.B., “Microflotation performance for algal separation”, Biotechnology and Bioengineering, Cilt 109, No 7, 1663-1673, 2012.
  • Liu, J.C., Chen, Y.M. ve Ju, Y.H., “Separation of algal cells from water by column flotation”, Separation Science and Technology, Cilt 34, No 11, 2259-2272, 1999.
  • Rubio, J., Souza, M.L. ve Smith, R.W., “Overview of flotation as a wastewater treatment technique”, Minerals Engineering, Cilt 15, No 3, 139-155, 2002.
  • Zenouzi, A., Ghobadian, B., Hejazi, M.A. ve Rahnemoon, P., “Harvesting of Microalgae Dunaliella salina Using Electroflocculation”, Journal of Agricultural Science and Technology, Cilt 15, No 5, 879-888, 2013.
  • Zhou, W., Min, M., Hu, B., Ma, X., Liu, Y., Wang, Q., Shi, J., Chen, P. ve Ruan, R., “Filamentous fungi assisted bio-flocculation: A novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells”, Separation and Purification Technology, Cilt 107, 158-165, 2013.
  • Bilad, M.R., Vandamme, D., Foubert, I., Muylaert, K. ve Vankelecom, I.F.J., “Harvesting microalgal biomass using submerged microfiltration membranes”, Bioresource Technology, Cilt 111, 343-352, 2012.
  • Bilad, M.R., Discart, V., Vandamme, D., Foubert, I., Muylaert, K. ve Vankelecom, I.F.J., “Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: Filtration performance and energy consumption”, Bioresource Technology, Cilt 138, 329-338, 2013.
  • Gürel, L. ve Büyükgüngör, H., “Kütle Aktarımının Membran Sistemlerindeki Rolü”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 21, No 6, 224-238, 2015.
  • Bilad, M.R., Arafat, H.A. ve Vankelecom, I.F.J., “Membrane technology in microalgae cultivation and harvesting: A review”, Biotechnology Advances, Cilt 32, No 7, 1283-1300, 2014.
  • Buckwalter, P., Embaye, T., Gormly, S. ve Trent, J.D., “Dewatering microalgae by forward osmosis”, Desalination, Cilt 312, 19-22, 2013.
  • Trent, J.D., Gormly, S.J., Delzeit, L.D., Flynn, M.T. ve Embaye, T.N., Algae bioreactor using submerged enclosures with semi-permeable membranes, in United States patent application US 20100216203. 2010: US.
  • Dor, I., “High density, dialysis culture of algae on sewage”, Water Research, Cilt 9, No 3, 251-254, 1975.
  • Bhave, R., Kuritz, T., Powell, L. ve Adcock, D., “Membrane-Based Energy Efficient Dewatering of Microalgae in Biofuels Production and Recovery of Value Added Co-Products”, Environmental Science & Technology, Cilt 46, No 10, 5599-5606, 2012.
  • Harun, R., Singh, M., Forde, G.M. ve Danquah, M.K., “Bioprocess engineering of microalgae to produce a variety of consumer products”, Renewable and Sustainable Energy Reviews, Cilt 14, No 3, 1037-1047, 2010.
  • Mubarak, M., Shaija, A. ve Suchithra, T.V., “A review on the extraction of lipid from microalgae for biodiesel production”, Algal Research, Cilt 7, 117-123, 2015.
  • Halim, R., Danquah, M.K. ve Webley, P.A., “Extraction of oil from microalgae for biodiesel production: A review”, Biotechnology Advances, Cilt 30, No 3, 709-732, 2012.
  • Teo, C.L. ve Idris, A., “Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production”, Bioresource Technology, Cilt 171, 477-481, 2014.
  • Rashid, N., Rehman, M.S.U., Memon, S., Ur Rahman, Z., Lee, K. ve Han, J.-I., “Current status, barriers and developments in biohydrogen production by microalgae”, Renewable and Sustainable Energy Reviews, Cilt 22, 571-579, 2013.
  • Zhang, L.P. ve Melis, A., “Probing green algal hydrogen production”, Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, Cilt 357, 1499-1507, 2002.
  • Kruse, O., Rupprecht, J., Bader, K.P., Thomas-Hall, S., Schenk, P.M., Finazzi, G. ve Hankamer, B., “Improved photobiological H-2 production in engineered green algal cells”, Journal of Biological Chemistry, Cilt 280, No 40, 34170-34177, 2005.
  • Torzillo, G., Scoma, A., Faraloni, C., Ena, A. ve Johanningmeier, U., “Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant”, International Journal of Hydrogen Energy, Cilt 34, No 10, 4529-4536, 2009.
  • Kawaguchi, H., Hashimoto, K., Hirata, K. ve Miyamoto, K., “H-2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus”, Journal of Bioscience and Bioengineering, Cilt 91, No 3, 277-282, 2001.
  • Ueno, Y., Kurano, N. ve Miyachi, S., “Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale”, Journal of Fermentation and Bioengineering, Cilt 86, No 1, 38-43, 1998.
  • Vergara-Fernández, A., Vargas, G., Alarcón, N. ve Velasco, A., “Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system”, Biomass and Bioenergy, Cilt 32, No 4, 338-344, 2008.
  • Chynoweth, D.P., “Renewable biomethane from land and ocean energy crops and organic wastes”, Hortscience, Cilt 40, No 2, 283-286, 2005.
  • Bird, K., Chynoweth, D. ve Jerger, D., “Effects of marine algal proximate composition on methane yields”, Journal of Applied Phycology, Cilt 2, No 3, 207-213, 1990.
  • Morand, P. ve Briand, X., “Anaerobic digestion of Ulva sp. 2. Study of Ulva degradation and methanisation of liquefaction juices”, Journal of Applied Phycology, Cilt 11, No 2, 165-177, 1999.
  • Briand, X. ve Morand, P., “Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation”, Journal of Applied Phycology, Cilt 9, No 6, 511-524, 1997.
  • Otsuka, K. ve Yoshino, A.“A fundamental study on anaerobic digestion of sea lettuce”, in Oceans '04. Mtts/Ieee Techno-Ocean '04. 2004. Kobe: IEEE.
Toplam 197 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Harun Elcik

Mehmet Çakmakcı

Yayımlanma Tarihi 7 Eylül 2017
Gönderilme Tarihi 17 Mayıs 2016
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Elcik, H., & Çakmakcı, M. (2017). MİKROALGLERDEN YENİLENEBİLİR BİYOYAKIT ÜRETİMİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(3). https://doi.org/10.17341/gazimmfd.337627
AMA Elcik H, Çakmakcı M. MİKROALGLERDEN YENİLENEBİLİR BİYOYAKIT ÜRETİMİ. GUMMFD. Eylül 2017;32(3). doi:10.17341/gazimmfd.337627
Chicago Elcik, Harun, ve Mehmet Çakmakcı. “MİKROALGLERDEN YENİLENEBİLİR BİYOYAKIT ÜRETİMİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 32, sy. 3 (Eylül 2017). https://doi.org/10.17341/gazimmfd.337627.
EndNote Elcik H, Çakmakcı M (01 Eylül 2017) MİKROALGLERDEN YENİLENEBİLİR BİYOYAKIT ÜRETİMİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 32 3
IEEE H. Elcik ve M. Çakmakcı, “MİKROALGLERDEN YENİLENEBİLİR BİYOYAKIT ÜRETİMİ”, GUMMFD, c. 32, sy. 3, 2017, doi: 10.17341/gazimmfd.337627.
ISNAD Elcik, Harun - Çakmakcı, Mehmet. “MİKROALGLERDEN YENİLENEBİLİR BİYOYAKIT ÜRETİMİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 32/3 (Eylül 2017). https://doi.org/10.17341/gazimmfd.337627.
JAMA Elcik H, Çakmakcı M. MİKROALGLERDEN YENİLENEBİLİR BİYOYAKIT ÜRETİMİ. GUMMFD. 2017;32. doi:10.17341/gazimmfd.337627.
MLA Elcik, Harun ve Mehmet Çakmakcı. “MİKROALGLERDEN YENİLENEBİLİR BİYOYAKIT ÜRETİMİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 32, sy. 3, 2017, doi:10.17341/gazimmfd.337627.
Vancouver Elcik H, Çakmakcı M. MİKROALGLERDEN YENİLENEBİLİR BİYOYAKIT ÜRETİMİ. GUMMFD. 2017;32(3).