Araştırma Makalesi
BibTex RIS Kaynak Göster

Lamine kompozit ve sandviç plakaların şekil ve gerilme algılaması için yeni bir dört-düğüm noktalı ters-plaka elemanı

Yıl 2020, , 1767 - 1782, 21.07.2020
https://doi.org/10.17341/gazimmfd.557477

Öz

Kompozit
malzemeler, çeşitli mühendislik yapılarının birincil yük taşıyıcı
bileşenlerinin imalat sürecinde yaygın olarak kullanılmaktadır. Ancak, kompozitlerin
yapısal bütünlüğünün, yapının hizmet ömrü boyunca meydana gelen hasarlardan
dolayı azalması muhtemeldir. Duruma dayalı bakım programlaması için kompozit
yapılara gerçek zamanlı şekil ve gerilme algılaması gerçekleştirebilen bir
yapısal sağlık izleme sistemi entegre edilebilir. Bu çalışmada, Rafine Zikzak
Teorisinin (RZT) temel olarak kullanıldığı ters sonlu elemanlar yöntemine
(iFEM) dayanan yeni bir dört düğümlü ters plaka elemanı önerilmiştir. Buradaki
iFEM-RZT formülasyonu, membran, eğilme, enine kayma ve zikzak kesit
gerinimlerini içeren RZT'nin bütün gerinim ölçüleri kümesini kullanan ağırlıklı
en küçük kareler fonksiyonunu en aza indirgemektedir. Mevcut elemanın temel
faydası, herhangi bir yükleme bilgisi gerektirmemesi ve şekil algılaması için
yalnızca yerleşik sensörlerden alınan gerinim ölçer ölçümlerini kullanmasıdır.
Diğer bir avantajı, aynı zamanda genel bir lamine kompozit ve sandviç yapı
sınıfının tam alan ve üç boyutlu yer değiştirmelerini ve gerilmelerini tahmin etmek
içinde uygulanabilir olmasıdır. Mevcut elemanın potansiyel yeteneklerini
göstermek için, farklı laminasyon tiplerine sahip olan bir lamine kompozit
plaka üzerinde çeşitli vaka çalışmaları yapılmıştır. İFEM-RZT sonuçları ve son
derece hassas sonlu elemanlar çözümleri arasındaki karşılaştırmaya göre, mevcut
yaklaşımın üstün doğruluğu ortaya konmuştur.

Kaynakça

  • Herrmann, A.S., Zahlen, P.C., Zuardy, I., Sandwich structures technology in commercial aviation, Sandwich Structures 7: Advancing with Sandwich Structures and Materials, Springer, Netherlands, 13-26, 2005. doi:10.1007/1-4020-3848-8_2
  • Vadakke, V., Carlsson, L.A., Experimental investigation of compression failure of sandwich specimens with face/core debond, Composites Part B: Engineering, 35:6, 583-590, 2004. doi:10.1016/j.compositesb.2003.10.004
  • Zou, Y., Tong, L.P.S.G., Steven, G.P., Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review, Journal of Sound and Vibration, 230:2, 357-378, 2000. doi:10.1006/jsvi.1999.2624
  • Tikhonov, A.N., Arsenin, V.Y., Solutions of Ill-Posed Problems, Winston and Sons, Washington, DC, 1977. doi:10.1137/1021044
  • Davis, M.A., Kersey, A.D., Sirkis, J., Friebele, E.J., Shape and vibration mode sensing using a fiber optic Bragg grating array, Smart Materials and Structures, 5:6, 759-765, 1996. doi:10.1088/0964-1726/5/6/005
  • Bogert, P.B., Haugse, E.D., Gehrki, R.E., Structural shape identification from experimental strains using a modal transformation technique, Proceedings of 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Norfolk, VA, 2003. doi:10.2514/6.2003-1626
  • Tessler, A., Spangler, J.L., A variational principal for reconstruction of elastic deformation of shear deformable plates and shells, NASA TM-2003-212445, 2003.
  • Tessler, A., Spangler, J.L., A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells, Computer Methods in Applied Mechanics and Engineering, 19:2, 327-339, 2005. doi:10.1016/j.cma.2004.03.015
  • Tessler, A., Spangler, J.L., Inverse FEM for full-field reconstruction of elastic deformations in shear deformable plates and shells, Proceedings of 2nd European Workshop on Structural Health Monitoring. Munich, Germany, 2004.
  • Vazquez, S.L., Tessler, A., Quach, C.C., Cooper, E.G., Parks, J., Spangler J.L., Structural health monitoring using high-density fiber optic strain sensor and inverse finite element methods, NASA TM-2005-213761, 2005.
  • Kefal, A., Oterkus, E., Tessler, A., Spangler, J.L. A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring. Engineering Science and Technology, an International Journal, 19, 1299-1313, 2016. doi:10.1016/j.jestch.2016.03.006
  • Kefal, A., Oterkus, E., Displacement and stress monitoring of a chemical tanker based on inverse finite element method, Ocean Engineering, 112, 33-46, 2016. doi:10.1016/j.oceaneng.2015.11.032
  • Kefal, A., Oterkus, E., Displacement and stress monitoring of a Panamax containership using inverse finite element method, Ocean Engineering, 119, 16-29, 2016. doi:10.1016/j.oceaneng.2016.04.025
  • Kefal, A., Mayang, J.B., Oterkus, E., Yildiz, M., Three dimensional shape and stress monitoring of bulk carriers based on iFEM methodology, Ocean Engineering, 147, 256-267, 2018. doi:10.1016/j.oceaneng.2017.10.040
  • Gherlone, M., Cerracchio, P., Mattone, M., Di Sciuva, M., Tessler, A., Shape sensing of 3D frame structures using an inverse finite element method, International Journal of Solids and Structures, 49:22, 3100-3112, 2012. doi:10.1016/j.ijsolstr.2012.06.009
  • Gherlone, M., Cerracchio, P., Mattone, M., Di Sciuva, M., Tessler, A., An inverse finite element method for beam shape sensing: theoretical framework and experimental validation, Smart Materials and Structures, 23:4, 045027, 2014. doi:10.1088/0964-1726/23/4/045027
  • Zhao, Y., Du, J., Bao, H., Xu, Q., Optimal Sensor Placement Based on Eigenvalues Analysis for Sensing Deformation of Wing Frame Using iFEM, Sensors, 18(8), 2424, 2018. doi:10.3390/s18082424
  • Mooij C., Martinez, M., Benedictus, R., iFEM benchmark problems for solid elements, Smart Materials and Structures, In-Press, 2019. doi:10.1088/1361-665X/ab136f
  • Miller, E.J., Manalo, R., Tessler, A., Full-Field Reconstruction of Structural Deformations and Loads from Measured Strain Data on a Wing Test Article using the Inverse Finite Element Method, NASA TM-2016-219407, 2016.
  • Kefal, A., Yildiz, M., Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method, Sensors, 17:12, 2775, 2017. doi:10.3390/s17122775.
  • Tessler, A., Di Sciuva, M., Gherlone, M., A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics, Journal of Mechanics of Materials and Structures, 5:2, 341-367, 2010. doi:10.2140/jomms.2010.5.341
  • Cerracchio, P., Gherlone, M., Di Sciuva, M., Tessler, A., A novel approach for displacement and stress monitoring of sandwich structures based on the inverse finite element method, Composite Structures, 127, 69-76, 2015. doi:10.1016/j.compstruct.2015.02.081
  • Kefal, A., Tessler, A., Oterkus, E., An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite and sandwich structures, Composite Structures, 179, 514-540, 2017. doi:10.1016/j.compstruct.2017.07.078
  • Kefal, A., Tessler, A., Oterkus, E., An Efficient Inverse Finite Element Method for Shape and Stress Sensing of Laminated Composite and Sandwich Plates and Shells, NASA/TP-2018-220079, 2018.
  • Tessler, A., Hughes, T.J.R., An improved treatment of transverse shear in the Mindlin-type four-node quadrilateral element, Computer Methods in Applied Mechanics and Engineering, 39:3, 311-335, 1983. doi:10.1016/0045-7825(83)90096-8

A novel four-node inverse-plate element for shape and stress sensing of laminated composite and sandwich plates

Yıl 2020, , 1767 - 1782, 21.07.2020
https://doi.org/10.17341/gazimmfd.557477

Öz

Composite
materials are widely utilized in manufacturing process of primary load bearing
components of various engineering structures. However, the structural integrity
of composites are likely to diminish due to damage accumulation over the
service life of the structure. A structural health monitoring (SHM) system that
can perform real-time shape and stress sensing can be integrated to composite
structures for condition-based maintenance scheduling. In this study, a new
four-node inverse-plate element, is proposed based on the inverse finite
element method (iFEM) in which the Refined Zigzag Theory (RZT) is used as a basis.
Herein the iFEM-RZT formulation minimizes a weighted least-squares functional
that uses the complete set of strain measures of RZT, that include the
membrane, bending, transverse shear and zigzag section strains. The main
benefit of the present element is that it does not require any loading
information and uses only strain gauge measurements taken from the on-board
sensors to perform shape sensing. Another advantage is that it is also
applicable to predict full field and three-dimensional displacements and
stresses of a general class of laminated composite and sandwich structures. To
demonstrate the potential capabilities of the present element, various case
studies were performed on a laminated composite plate having different types of
laminations. According to the comparison between iFEM-RZT results and highly
accurate finite element solutions, the superior accuracy of the present
approach was revealed.

Kaynakça

  • Herrmann, A.S., Zahlen, P.C., Zuardy, I., Sandwich structures technology in commercial aviation, Sandwich Structures 7: Advancing with Sandwich Structures and Materials, Springer, Netherlands, 13-26, 2005. doi:10.1007/1-4020-3848-8_2
  • Vadakke, V., Carlsson, L.A., Experimental investigation of compression failure of sandwich specimens with face/core debond, Composites Part B: Engineering, 35:6, 583-590, 2004. doi:10.1016/j.compositesb.2003.10.004
  • Zou, Y., Tong, L.P.S.G., Steven, G.P., Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review, Journal of Sound and Vibration, 230:2, 357-378, 2000. doi:10.1006/jsvi.1999.2624
  • Tikhonov, A.N., Arsenin, V.Y., Solutions of Ill-Posed Problems, Winston and Sons, Washington, DC, 1977. doi:10.1137/1021044
  • Davis, M.A., Kersey, A.D., Sirkis, J., Friebele, E.J., Shape and vibration mode sensing using a fiber optic Bragg grating array, Smart Materials and Structures, 5:6, 759-765, 1996. doi:10.1088/0964-1726/5/6/005
  • Bogert, P.B., Haugse, E.D., Gehrki, R.E., Structural shape identification from experimental strains using a modal transformation technique, Proceedings of 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Norfolk, VA, 2003. doi:10.2514/6.2003-1626
  • Tessler, A., Spangler, J.L., A variational principal for reconstruction of elastic deformation of shear deformable plates and shells, NASA TM-2003-212445, 2003.
  • Tessler, A., Spangler, J.L., A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells, Computer Methods in Applied Mechanics and Engineering, 19:2, 327-339, 2005. doi:10.1016/j.cma.2004.03.015
  • Tessler, A., Spangler, J.L., Inverse FEM for full-field reconstruction of elastic deformations in shear deformable plates and shells, Proceedings of 2nd European Workshop on Structural Health Monitoring. Munich, Germany, 2004.
  • Vazquez, S.L., Tessler, A., Quach, C.C., Cooper, E.G., Parks, J., Spangler J.L., Structural health monitoring using high-density fiber optic strain sensor and inverse finite element methods, NASA TM-2005-213761, 2005.
  • Kefal, A., Oterkus, E., Tessler, A., Spangler, J.L. A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring. Engineering Science and Technology, an International Journal, 19, 1299-1313, 2016. doi:10.1016/j.jestch.2016.03.006
  • Kefal, A., Oterkus, E., Displacement and stress monitoring of a chemical tanker based on inverse finite element method, Ocean Engineering, 112, 33-46, 2016. doi:10.1016/j.oceaneng.2015.11.032
  • Kefal, A., Oterkus, E., Displacement and stress monitoring of a Panamax containership using inverse finite element method, Ocean Engineering, 119, 16-29, 2016. doi:10.1016/j.oceaneng.2016.04.025
  • Kefal, A., Mayang, J.B., Oterkus, E., Yildiz, M., Three dimensional shape and stress monitoring of bulk carriers based on iFEM methodology, Ocean Engineering, 147, 256-267, 2018. doi:10.1016/j.oceaneng.2017.10.040
  • Gherlone, M., Cerracchio, P., Mattone, M., Di Sciuva, M., Tessler, A., Shape sensing of 3D frame structures using an inverse finite element method, International Journal of Solids and Structures, 49:22, 3100-3112, 2012. doi:10.1016/j.ijsolstr.2012.06.009
  • Gherlone, M., Cerracchio, P., Mattone, M., Di Sciuva, M., Tessler, A., An inverse finite element method for beam shape sensing: theoretical framework and experimental validation, Smart Materials and Structures, 23:4, 045027, 2014. doi:10.1088/0964-1726/23/4/045027
  • Zhao, Y., Du, J., Bao, H., Xu, Q., Optimal Sensor Placement Based on Eigenvalues Analysis for Sensing Deformation of Wing Frame Using iFEM, Sensors, 18(8), 2424, 2018. doi:10.3390/s18082424
  • Mooij C., Martinez, M., Benedictus, R., iFEM benchmark problems for solid elements, Smart Materials and Structures, In-Press, 2019. doi:10.1088/1361-665X/ab136f
  • Miller, E.J., Manalo, R., Tessler, A., Full-Field Reconstruction of Structural Deformations and Loads from Measured Strain Data on a Wing Test Article using the Inverse Finite Element Method, NASA TM-2016-219407, 2016.
  • Kefal, A., Yildiz, M., Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method, Sensors, 17:12, 2775, 2017. doi:10.3390/s17122775.
  • Tessler, A., Di Sciuva, M., Gherlone, M., A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics, Journal of Mechanics of Materials and Structures, 5:2, 341-367, 2010. doi:10.2140/jomms.2010.5.341
  • Cerracchio, P., Gherlone, M., Di Sciuva, M., Tessler, A., A novel approach for displacement and stress monitoring of sandwich structures based on the inverse finite element method, Composite Structures, 127, 69-76, 2015. doi:10.1016/j.compstruct.2015.02.081
  • Kefal, A., Tessler, A., Oterkus, E., An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite and sandwich structures, Composite Structures, 179, 514-540, 2017. doi:10.1016/j.compstruct.2017.07.078
  • Kefal, A., Tessler, A., Oterkus, E., An Efficient Inverse Finite Element Method for Shape and Stress Sensing of Laminated Composite and Sandwich Plates and Shells, NASA/TP-2018-220079, 2018.
  • Tessler, A., Hughes, T.J.R., An improved treatment of transverse shear in the Mindlin-type four-node quadrilateral element, Computer Methods in Applied Mechanics and Engineering, 39:3, 311-335, 1983. doi:10.1016/0045-7825(83)90096-8
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Adnan Kefal 0000-0002-4139-999X

Yayımlanma Tarihi 21 Temmuz 2020
Gönderilme Tarihi 24 Nisan 2019
Kabul Tarihi 19 Mart 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Kefal, A. (2020). Lamine kompozit ve sandviç plakaların şekil ve gerilme algılaması için yeni bir dört-düğüm noktalı ters-plaka elemanı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(4), 1767-1782. https://doi.org/10.17341/gazimmfd.557477
AMA Kefal A. Lamine kompozit ve sandviç plakaların şekil ve gerilme algılaması için yeni bir dört-düğüm noktalı ters-plaka elemanı. GUMMFD. Temmuz 2020;35(4):1767-1782. doi:10.17341/gazimmfd.557477
Chicago Kefal, Adnan. “Lamine Kompozit Ve Sandviç plakaların şekil Ve Gerilme algılaması için Yeni Bir dört-düğüm Noktalı Ters-Plaka Elemanı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 4 (Temmuz 2020): 1767-82. https://doi.org/10.17341/gazimmfd.557477.
EndNote Kefal A (01 Temmuz 2020) Lamine kompozit ve sandviç plakaların şekil ve gerilme algılaması için yeni bir dört-düğüm noktalı ters-plaka elemanı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 4 1767–1782.
IEEE A. Kefal, “Lamine kompozit ve sandviç plakaların şekil ve gerilme algılaması için yeni bir dört-düğüm noktalı ters-plaka elemanı”, GUMMFD, c. 35, sy. 4, ss. 1767–1782, 2020, doi: 10.17341/gazimmfd.557477.
ISNAD Kefal, Adnan. “Lamine Kompozit Ve Sandviç plakaların şekil Ve Gerilme algılaması için Yeni Bir dört-düğüm Noktalı Ters-Plaka Elemanı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/4 (Temmuz 2020), 1767-1782. https://doi.org/10.17341/gazimmfd.557477.
JAMA Kefal A. Lamine kompozit ve sandviç plakaların şekil ve gerilme algılaması için yeni bir dört-düğüm noktalı ters-plaka elemanı. GUMMFD. 2020;35:1767–1782.
MLA Kefal, Adnan. “Lamine Kompozit Ve Sandviç plakaların şekil Ve Gerilme algılaması için Yeni Bir dört-düğüm Noktalı Ters-Plaka Elemanı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 4, 2020, ss. 1767-82, doi:10.17341/gazimmfd.557477.
Vancouver Kefal A. Lamine kompozit ve sandviç plakaların şekil ve gerilme algılaması için yeni bir dört-düğüm noktalı ters-plaka elemanı. GUMMFD. 2020;35(4):1767-82.

Cited By

The Importance of GRP Composite Material in Liquid Fertilizer Tanks and Production Optimization of the Tanks
Afyon Kocatepe Üniversitesi Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Dergisi
https://doi.org/10.53448/akuumubd.1447926