Araştırma Makalesi
BibTex RIS Kaynak Göster

UVA uygulamalarıyla topraktaki PCB’lerin gideriminde H2O2 kullanımı

Yıl 2021, , 779 - 792, 05.03.2021
https://doi.org/10.17341/gazimmfd.596319

Öz

Bu çalışmada,
topraktaki PCB kirliliğinin uzaklaştırılması için UV uygulamalarında belli
dozlarda (%1, %10 ve %20) H2O2 kullanımının
S82  PCB giderim verimine  etkilerini belirlemek amaçlanmıştır. Çalışma
kapsamında alınan toprak örnekleri tasarlanan düzenekte 24 saat boyunca 18 oC
ve 30 oC sıcaklıklarda, UV A ışınlarına maruz bırakılarak PCB
giderim uygulamaları gerçekleştirilmiştir. UV A uygulamalarında sonrasında
katkı maddesi kullanımıyla beraber 18 oC’de giderim verimi %82 iken,
30 oC’de %95’e ulaşmıştır. En verimli (%95 PCB giderimi) doz 30 oC’de
%10 H2O2 olarak belirlenmiştir. Türler bazında
bakıldığında ağır klorlu türlerin gideriminin yüksek olduğu görülmüştür. Dutch
S7
PCB türleri için tüm uygulamalar incelendiğinde, %90’ın üzerinde giderim
verimleri elde edilmiştir. PCB izomerlerinin üç (yutma, dermal, soluma) ana
yolla maruziyetlerinin kanser riski olasılık tespiti yapılmış ve PCB türlerinin
kanserojenik potansiyel risk değerleri ile toksisite değerleri belirlenmiştir.
Bursa’da sanayi bölgesi yakınından alınan toprak örneklerinin kanser riski
analizi sonucunda “çok düşük risk” grubunda yer aldığı ve toksisite açısından
sağlık riski oluşturmadığı belirlenmiştir.  

Kaynakça

  • 1. Cetin B., Investigation of PAHs, PCBs and PCs in soils around a Heavily Industrialized Area in Kocaeli, Turkey: Concentrations, distributions, sources and toxicological effects. Science of the Total Environment, 560, 160-169, 2016.
  • 2. Dönmez B., Toprak örneklerinde poliklorlubifenil (PCB) kirliliğinin araştırılması ve yasal sınır değerlerin uygulanabilirliğinin değerlendirilmesi, Master Tezi, Uludag Üniversitesi, Fen Bilimleri Enstitüsü, Bursa, 2012.
  • 3. Salihoğlu G., Tasdemir Y., Prediction of the PCB Pollution in the Soils of Bursa, an Industrial City in Turkey, Journal of Hazardous Materials, 164, 1523 -1531, 2009.
  • 4. Zhao Q., Bai J., Lu Q, Gao Z., Jia J., Cui B., Liu X., Polychlorinated biphenyls in sediments/soils of different wetlands along 100-year coastal reclamation chronosequence in the Pearl River Estuary, China., Environmental Pollution, 213, 860-869, 2016.
  • 5. Chang F., Chiu T., Yen J., Wang Y., Dechlorination pathways of ortho-substituted PCBs by UV irridation in n-hexane and their correlation to the charge distribution on carbon atom, Chemosphere, 51 (8), 775-784, 2003.
  • 6. Stella S., Covino S., Carova M., Filipova A., Petruccioli M., D’annibale A., Cajtham T., Bioremediation of long-term PCB-contaminated soil by white-rot fungi, Journal of Hazardous Materials , 324, 701-710, 2017.
  • 7. Salimizadeh M., Shirvani M., Shariatmadari H., Nikaeen M., Nozar S., Coupling of bioaugmentation and phytoremediation to improve PCBs removal from a transformer oil-contaminated soil, International Journal of Phytoremediation, 20(7), 658-665, 2018.
  • 8. Lin Z., Zhao L., Donga Y., Application of microwave-irradiated manganese dioxide in the removal of polychlorinated biphenyls from soil contaminated by capacitor oil. Environmental Technology, 34 (5), 637-644, 2013.
  • 9. Liu J., Qi Z., Zhao Z., Li X., Buekens A., Yan J., Ni M., Thermal desorption of PCB-contaminated soil with sodium hydroxide. Environmental Science and Pollution Research, 22(24), 19538-19545, 2015.
  • 10. Zhao Z., Ni M., Li X., Buekens A., Yan J. Combined mechanochemical and thermal treatment of PCBs contaminated soil. The Royal Society of Chemistry, 7, 21180-21186, 2017.
  • 11. Lin Y., Gupta G., Baker J., Photodegradation of Polychlorinated Biphenyl Congeners Using Simulated Sunlight and Diethylamine, Chemosphere, 31(5), 3323-3344, 1995.
  • 12. Lin YJ., Teng LS., Lee A., Chen YL., Effect of photosensitizer diethylamine on the photodegradation of polychlorinated biphenyls, Chemosphere, 55(6), 879-884, 2004.
  • 13. Zhang, LH., Li P, Gong Z., Li X., Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light, Journal of Hazardous Materials, 158 (2-3), 478-484, 2008.
  • 14. Guieysse B., Viklund G., Toes A.C., Mattiasson, B., Combined UV-Biological degradation of PAHs, Chemosphere, 55, 1493-1499, 2004.
  • 15. Taşdemir Y., Aksoy E., Salihoglu G., Salihoglu K., Yolsal D., Bursa Topraklarındaki PCB Dağılımları ve Hava/Toprak Arakesitindeki Değişim Miktarlarının Bölgesel ve Mevsimsel Olarak Belirlenmesi, Proje No: 108Y084, 2012.
  • 16. Klanova J., Matykiewiczova N., Macka Z., Prosek P., Laska K., Klan P., Persistent Organic Pollutants in Soils and Sediments from James Ross Island, Antarctica, Environmental Pollution., 152, 416-23, 2008.
  • 17. Li YF., Harner T., Lıu L., Zhang Z., Ren N., Jıa H., Ma J., Sverko E., PCBs in global air and surface soil: Distributions, air-soil exchange, and fractionation effect, Environ. Sci. Technol., 44(8), 2784-2790, 2010.
  • 18. Melnyk A., Dettlaff A., Kuklinska K., Concentration and sources of PAHs and PCBs in surface soil near a municipal soil waste landfill, Science of the total environment, 18-27, 530-531, 2015.
  • 19. Eker G., Kılıç M., Bursa'da Poliaromatik Hidrokarbonlardan (PAH) Kaynaklanan Toprak Kirliliği Seviyesinin Belirlenmesi ve Giderim Olanaklarının Araştırılması, TÜBİTAK 114Y833 nolu 3001 Projesi, 2017.
  • 20. Taşdemir Y., Odabaşı M., Vardar N., Sofuoğlu A., Murphy T.J., Holsen T.M., Dry deposition fluxes and velocities of polychlorinated biphenyls measured associated with particles, Atmospheric Environment, 38, 2447-2456, 2004.
  • 21. Eker G., Spatial Distribution of Polycyclic Aromatic Hydrocarbon (PAH) Concentration in Soils from Bursa, Turkey, Archives of Environmental Contamination and Toxicology, 70, 406 - 417, 2016.
  • 22. Cetin B., Yatkın S., Bayram A., Odabaşı M., Ambient concentrations and source apportionment of PCBs and trace elements around an industrial area in Izmir, Turkey, Chemosphere, 69, 1267-1277, 2007.
  • 23. Salihoğlu G., Salihoğlu N.K., Aksoy E., Taşdemir Y., Spatial and temporal distribution of polychlorinated biphenyl (PCB) concentrations in soils of an industrialized city in Turkey, Journal of Environmental Management , 92, 724-732, 2011.
  • 24. Oğulmuş R., Bursa Topraklarındaki Poliklorlu bifenillerin (PCB’ler) Bölgesel ve mevsimsel değişimleri, Master Tezi, Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bursa, 2012.
  • 25. Ahmad M., Simon M.A, Sherrin A, Tuccillo ME, Ullman J.L., Teel, AL, Watts, RJ, Treatment of polychlorinated biphenyls in two surface soils using catalyzed H2O2 propagations, Chemosphere, 84, 855-862, 2011.
  • 26. Hu Q, Zhang C., Wang Z., Chen Y., Mao K., Zhang X., Xiong Y., Zhu M., Photodegradation of methyl tert-butyl ether (MTBE) by UV/H2O2 and UV/TiO2, Journal Hazardous Materials, 154, 795-803, 2008.
  • 27. Saquib M., Abu Tariq M., Haque M.M., Muneer M., Photocatalytic degradation of dispersed blue 1 using UV/TiO2/ H2O2, Jornal Environ. Manag., 88, 300-306, 2008.
  • 28. Salihoglu N.K., Eker Sanlı G., Salihoglu G., Tasdemir Y., Removal of polycyclic aromatic hydrocarbons from municipal sludge using UV light, Desalination and Water Treatment, 44(1-3), 324-333, 2012.
  • 29. Özcan E., Fotolitik oksidasyon ve fotolitik peroksidasyon ile bazı organik ve inorganik kirleticilerin parçalanmasında UV-A ve UV-C ışınlarının kıyaslanması, Master Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya, 2009.
  • 30. Cebe M., Physicochemistry Volume II: Fundamental Concepts in Reaction Kinetics. Uludag University Press, Turkey, 1995.
  • 31. Nadal M., Wargent K.C., Jones N.D., Paul M., Schuhmacher J.L., Influence of UV-B radiation and temperature on photodegradation of PAHs: preliminary results, Journal of Atmospheric Chemistry, 55, 241-252, 2006.
  • 32. Chiou C.H., Wu C.Y., Juang R.S, Influence of operating parameters on the photocatalytic degradation of phenol in UV/TiO2 process, Chemical Engineering Journal, 139, 322-329, 2007.
  • 33. Barkat M.A., Tseng J.M., Huang C.P., Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds, Applied Catalysis B: Environmental, 59, 99-104, 2005.
  • 34. Qin H., Bao H., Liu A., Hou X., Phodegredation of 4-Chlorobiphenly in Hexane by UV Irradiation, Chinese Journal of Chemistry, 24(3), 355-359, 2006.
  • 35. Bekbölet M., Fundamentals of Advanced Oxidation Processes, in Water, Wastewater and Soil Treatment by Advanced Oxidation Processes (AOPs), 13-21, 2010.
  • 36. Dasary S.S.R., Saloni J., Fletcher A., Anjaneyulu Y., Yu H., Photodegradation of Selected PCBs in the Presence of Nano-TiO2 as Catalyst and H2O2 as an Oxidant, International Journal of Environmental Research and Public Health, 7, 3987-4001, 2010.
  • 37. Smith B.A., Teel A.L., Watts R.J., Identification of the species responsible for the degradation of carbon tetrachloride by modified Fenton’s reagent, Environmental Science Technology, 38, 5465-5469, 2004.
  • 38. Macawıle M., Centeno C., Abella L., Gallardo S., Suzukı M., Effect of Light Intensity on the Photodegredation of PCB 153 in Aqueous Solution using UV and UV/ H2O2, Journal of Water and Environmental Technology, 9(1), 69-77, 2011.
  • 39. Rivas F.J., Beltran F.J., Gimeno O., Frades J., Treatment of olive oil mill wastewater by Fenton's reagent, Journal of Agricultural and Food Chemistry, 49, 1873-1880, 2001.
  • 40. Dong D.B., Li P.J., Li X.J., Xu C.B., Gong D.W., Zhang Y.Q., Zhao Q., Li P., Photocatalytic degradation of phenanthrene and pyrene on soil surfaces in the presence of nanometer rutile TiO2 under UV-irradiation, Chemical Engineering Journal, 158, 378-383, 2010.
  • 41. Hanedar A., Güneş E., Kaykioğlu, G., Çelik, S., Cabi, E., Presence and distributions of POPs in soil, atmospheric deposition, and bioindicator samples in an industrial-agricultural area in Turkey, Environmental Monitoring and Assessment, 191(1), 42, 2018.
  • 42. Matafonova G., Batoev V., Comparison of UV and UV/H2O2 treatments using excilamps for removal of monochlorophenols in the molecular and anionic form, Journal of Environmental Science and Health, Part A, 47(13), 2077-2083, 2012.
  • 43. Holoubek I., Dusek L., Sanka M., Hofman J., Cupr P., Jarkovský J., Zbíral J., Klanova J., Soil burdens of persistent organic pollutants e their levels, fate and risk. Part I. Variation of concentration ranges according to different soil uses and locations, Environmental Pollution, 157, 3207-3217, 2009.
  • 44. EPA (United States Environmental protection Agency), Passive Samplers for Investigations of Air Quality: Method Description, Implementation, and Comparison to Alternative Sampling Methods, Engineering, page no: 43, 2010, available at: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100MK4Z.PDF?Dockey¼P100MK4Z.PDF.
  • 45. Birgül A., Kurt-Karakus P. B., Alegria H., Celik H., Cicek T., Güven E., Polyurethane foam (PUF) disk passive samplers derived polychlorinated biphenyls (PCBs) concentrations in the ambient air of Bursa-Turkey: Spatial and temporal variations and health risk assessment, Chemosphere, 168, 1345-1355, 2017.
  • 46. USEPA (US Environmental Protection Agency), Slope Factors for Carcinogens, Washington, DC, 2007.
  • 47. Syed J.H., Malik R.N., Li J., Zhang G., Jones K.C., Levels, distribution and air soil exchange fluxes of polychlorinated biphenyls (PCBs) in the environment of Punjab province Pakistan, Ecotoxicology Environmental Safety, 97, 189-195, 2013.
  • 48. Petrik J., Drobna B., Pavuk M., Jursa S., Wimmerova S., Chovancova J., Serum PCBs and organochlorine pesticides in Slovakia: age, gender, and residence as determinants of organochlorine concentrations, Chemosphere 65 (3), 410-418, 2006.
  • 49. International Agency for Research on Cancer (IARC), Polychlorinated Biphenyls and Polybrominated Biphenyls, Monographs on the evaluation of Carcinogenic Risks to Humans, Lyon, France, 107, 439-440, 2016.
  • 50. Çakmak H., Atak N., Dioxins ve Health Impacts, Süleyman Demirel Üniversitesi, Isparta, Sağlık Bilimleri Enstitüsü, Tıp Fakültesi Dergisi, 24 (4), 188-197, 2017.
  • 51. Skrbic B., Marinkovic V., Antic I., Gegic AP., Seasonal variation and health risk assessment of organochlorine compounds in urban soils of Novi Sad, Serbia, Chemosphere, 181, 101-110, 2017.
  • 52. Cachada A., Pato P., Rocha-Santos T., Silva E.F., Duarte A.C., Levels, sources and potential human health risks of organic pollutants in urban soils, Science of the total environment, 430, 184-192, 2012.
  • 53. Dumanoğlu Y., Gaga E., Gungörmüs E., Sofuoglu S.C., Odabasi M., Spatial and seasonal variations, sources, air-soil exchange, and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya, Turkey, the province of thermal power plants, Science of the total environment, 580, 920-935, 2017.
  • 54. Lu H., Liu W., Characterization and risk assessment of polychlorinated biphenyls in City Park soils of Xi'An, China, Bulletin of environmental contamination and toxicology, 94, 393-398, 2015.
  • 55. Wu X., Chena A., Wang S., Zoub J., Liua H., Xiao S., Polychlorinated biphenyls in two typical landforms of Southern Anhui province, China: Sources, air-soil exchange, and risk assessment, Atmospheric Pollution Research, 9, 569-576, 2018.
  • 56. Perez-Maldonado I.N., Martinez O.C.A., Ruiz-Vera T., Orta-Garcia S.T., Varela-Silva JA, Human Health Risks Assessment Associated with Polychlorinated Biphenyls (PCBs) in Soil from Different Contaminated Areas of Mexico, Bulletin of environmental contamination and toxicology, 99, 338-343, 2017.
  • 57. Toan V.D, Quy N.P, Residues of polychlorinated biphenyls (PCBs) in sediment from caubay river and their impacts on agricultural soil, human health risk in kieuky area, Vietnam, Bulletin of environmental contamination and toxicology, 95, 177-182, 2015.
  • 58. Başaran B., Kocaeli’de evlerin iç ortam tozunda PBDE, PCB ve PAH kaynaklarının belirlenmesi ve risk tahmini, Master tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Kocaeli, 2018.
  • 59. Perez-Vazquez F.J., Flores-Ramirez R., Ochoa-Martinez A.C., Carrizales-Yanez L., Ilizaliturri-Hernandez C.A., Moctezuma-Gonzalez J., Pruneda-Alvarez L.G., Ruiz-Vera T., Orta-Garcia S.T., Gonzalez-Palomo A.K., Perez-Maldonado I. N., Human health risks associated with heavy metals in soil in different areas of San Luis Potosí, México, Human and ecological risk assessment: An International Journal, 22(2), 323-336, 2016.
  • 60. Sun H., Qi Y., Zhang D., Li Q.X., Wang J., Concentrations, distribution, sources and risk assessment of organohalogenated contaminants in soils from Kenya, Eastern Africa, Environmental Pollution, 209, 177-185, 2016.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Büşra Tandoğan 0000-0003-1629-7796

Gizem Eker Şanlı 0000-0002-7175-2942

Yayımlanma Tarihi 5 Mart 2021
Gönderilme Tarihi 24 Temmuz 2019
Kabul Tarihi 18 Ekim 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Tandoğan, B., & Eker Şanlı, G. (2021). UVA uygulamalarıyla topraktaki PCB’lerin gideriminde H2O2 kullanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(2), 779-792. https://doi.org/10.17341/gazimmfd.596319
AMA Tandoğan B, Eker Şanlı G. UVA uygulamalarıyla topraktaki PCB’lerin gideriminde H2O2 kullanımı. GUMMFD. Mart 2021;36(2):779-792. doi:10.17341/gazimmfd.596319
Chicago Tandoğan, Büşra, ve Gizem Eker Şanlı. “UVA uygulamalarıyla Topraktaki PCB’lerin Gideriminde H2O2 kullanımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, sy. 2 (Mart 2021): 779-92. https://doi.org/10.17341/gazimmfd.596319.
EndNote Tandoğan B, Eker Şanlı G (01 Mart 2021) UVA uygulamalarıyla topraktaki PCB’lerin gideriminde H2O2 kullanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 2 779–792.
IEEE B. Tandoğan ve G. Eker Şanlı, “UVA uygulamalarıyla topraktaki PCB’lerin gideriminde H2O2 kullanımı”, GUMMFD, c. 36, sy. 2, ss. 779–792, 2021, doi: 10.17341/gazimmfd.596319.
ISNAD Tandoğan, Büşra - Eker Şanlı, Gizem. “UVA uygulamalarıyla Topraktaki PCB’lerin Gideriminde H2O2 kullanımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/2 (Mart 2021), 779-792. https://doi.org/10.17341/gazimmfd.596319.
JAMA Tandoğan B, Eker Şanlı G. UVA uygulamalarıyla topraktaki PCB’lerin gideriminde H2O2 kullanımı. GUMMFD. 2021;36:779–792.
MLA Tandoğan, Büşra ve Gizem Eker Şanlı. “UVA uygulamalarıyla Topraktaki PCB’lerin Gideriminde H2O2 kullanımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 36, sy. 2, 2021, ss. 779-92, doi:10.17341/gazimmfd.596319.
Vancouver Tandoğan B, Eker Şanlı G. UVA uygulamalarıyla topraktaki PCB’lerin gideriminde H2O2 kullanımı. GUMMFD. 2021;36(2):779-92.