Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Effects of Intake Manifold Pressure on Performance and Combustion Characteristics in an HCCI Engine

Yıl 2022, , 1735 - 1750, 28.02.2022
https://doi.org/10.17341/gazimmfd.602742

Öz

Homogeneous charge compression
ignition (HCCI) engines have significant advantages over spark ignition (SI)
and compression ignition (CI) engines due to their high thermal efficiency and
low NOx emissions. However, it is difficult to control the start of combustion.
In this study, the effects of the intake manifold pressure on HCCI combustion
were investigated experimentally at 373 K intake temperature in a four
cylinders HCCI engine, which was transformed from the SI engine. It was
observed that there was an advance in the start of combustion as the manifold
pressure increased. It was also observed that the change in octane number had
significant effects on the start of combustion. The highest thermal efficiency
was recorded as 46.38% at 120 kPa manifold pressure using RON40 fuel. The
increase in the volumetric efficiency that depends on the increase in manifold
pressure provided an increase in maximum cylinder pressure and heat release.

Kaynakça

  • Iida M., Hayashi M., Foster D. and Martin J., Characteristics of homogeneous charge compression ignition (HCCI) engine operation for variations in compression ratio, speed and intake temperature while using n-butane as a fuel, Journal of Engineering for Gas Turbines and Power, 125(2), 472-478, 2003.
  • Yılmaz E., Solmaz H., Polat S. and Altın M., Effect of the three-phase diesel emulsion fuels on engine performance and exhaust emissions, Journal of the Faculty of Engineering and Architecture of Gazi University, 28(1), 127-134, 2014.
  • Can O., Cinar C. and Sahin F., The investigation of the effects of premixed gasoline charge on HCCI-DI engine combustion and exhaust emissions, Journal of the Faculty of Engineering and Architecture of Gazi University, 24(2), 229-236, 2009.
  • Nagareddy S., Temperature distribution measurement on combustion chamber surface of diesel engine-experimental method, International Journal of Automotive Science and Technology, 1(3), 8-11, 2017.
  • Sharma T. K., Rao G. A. P. and Madhumurthy K., Enhancement of rate of heat transfer in HCCI engine with induction induced swirl and under varying compression ratios and boost pressures, Journal of Mechanical Science and Technology, 29(10), 4545-4553, 2015.
  • Epping K., Aceves S. M., Bechtold R. L. and Dec J. E., The potential of HCCI combustion for high efficiency and low emissions, SAE Technical Paper, 2002-01-1923, 2002.
  • Sharma T. K., Rao G. A. P. and Madhumurthy K., Combustion analysis of ethanol in HCCI engine, Trends in Mechanical Engineering and Technology, 3(1), 1-10, 2012.
  • Yap D., Karlovsky J., Megaritis A., Wyszynski M. and Xu H., An investigation into propane homogeneous charge compression ignition (HCCI) engine operation with residual gas trapping, Fuel, 84(18), 2372-2379, 2005.
  • Lu X., Hou Y., Zu L. and Huang Z., Experimental study on the auto-ignition and combustion characteristics in the homogeneous charge compression ignition (HCCI) combustion operation with ethanol/n-heptane blend fuels by port injection, Fuel, 85(17), 2622-2631, 2006.
  • Megaritis A., Yap D. and Wyszynski M., Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping, Energy, 32 (12), 2396-2400, 2007.
  • Arcoumanis C., Bae C., Crookes R. and Kinoshita E., The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review, Fuel, 87(7), 1014-1030, 2008.
  • Cinar C. and Uyumaz A., Cam design and manufacturing for a homogeneous charge compression ignition gasoline engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 29(1), 15-22, 2014.
  • Zhao H., HCCI and CAI engines for the automotive industry, Elsevier, 2007.
  • Cinar C., Uyumaz A., Solmaz H., Sahin F., Polat S. and Yilmaz E., Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels, Fuel Processing Technology, 130, 275-281, 2015.
  • He B. Q., Liu M. B. and Zhao H., Comparison of combustion characteristics of n-butanol/ethanol- gasoline blends in a HCCI engine, Energy Conversion and Management, 95, 101-109, 2015.
  • Solouk A., Shakiba-herfeh M., Kannan K., Solmaz H., Dice P., Bidarvatan M., Kondipati N. N. T. and Shahbakhti M., Fuel economy benefits of integrating a multi-mode low temperature combustion (LTC) engine in a series extended range electric powertrain, SAE Technical Paper, 2016-01-2361, 2016.
  • Haraldsson G., Tunestål P., Johansson B. and Hyvönen J., HCCI combustion phasing in a multi cylinder engine using variable compression ratio, SAE Technical Paper, 2002-01-2858, 2002.
  • Halis S., Nacak C., Solmaz H., Yılmaz E. and Yücesu H. S., Investigation of the effects of octane number on combustion characteristics and engine performance in a HCCI engine, Journal of Thermal Science and Technology, 38(2), 99-110, 2018.
  • Shaver G. M., Roelle M. and Gerdes J. C., Modeling cycle-to-cycle coupling in HCCI engines utilizing variable valve actuation, IFAC Proceedings Volumes, 37(22), 227-232, 2004.
  • Hamada K., Niijima S., Yoshida K., Shoji H., Shimada K. and Shibano K., The effects of the compression ratio, equivalence ratio and intake air temperature on ignition timing in a HCCI engine using DME fuel, SAE Technical Paper, 2005-32-0002, 2005.
  • Lu X. C., Chen W. and Huang Z., A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR: Part 1. The basic characteristics of HCCI combustion, Fuel, 84(9), 1074-1083, 2005.
  • Agrell F., Control of HCCI by aid of variable valve timings with specialization in usage of a non-linear quasi-static compensation, PhD diss., KTH, 2006.
  • Cinar C., Uyumaz A., Solmaz H. and Topgul T., Effects of valve lift on the combustion and emissions of a HCCI gasoline engine, Energy Conversion and Management, 94, 159-168, 2015.
  • Polat S., Kannan K., Shahbakhti M., Uyumaz A. and Yucesu H. S., An experimental study for the effects of supercharging on performance and combustion of an early direct injection HCCI engine, Second International Research Conference on Engineering, Science and Management, Dubai, 2015.
  • Polat S., Yucesu H. S., Kannan K., Uyumaz A., Solmaz H. and Shahbakhti M., Experimental comparison of different injection timings in an HCCI engine fueled with n-heptane, International Journal of Automotive Science and Technology, 1(1), 1-6, 2017.
  • Canakci M. and Reitz R. D., Experimental optimization of a DI-HCCI gasoline engine using split injections with fully-automated micro-genetic algorithms, International Journal of Engine Research, 4, 47-60, 2003.
  • Canakci M., An experimental study for the effects of boost pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine, Fuel, 87, 1503-1514, 2008.
  • Olsson J. O., Tunestal P. and Johansson B., Boosting for high load HCCI, SAE Technical Paper, 2004-01-0940, 2004.
  • Xu F., Wang Z., Yang D. B. and Wang J. X., Potential of high load extension for gasoline HCCI engine using boosting and exhaust gas recirculation, Energy & Fuels, 23, 2444-2452, 2009.
  • Bai G. and Ning H., Investigation of intake boost pressure effects on performance and exhaust exergy of a natural gas fueled HCCI combustion engine, International Journal of Engineering Innovations and Research, 7(2), 132-135, 2018.
  • Canakci M., Combustion characteristics of a DI-HCCI gasoline engine running at different boost pressures, Fuel, 96, 546-555, 2012.
  • Dec J. E. and Yang Y., Boosted HCCI for high power without engine knock and with ultra-low NOx emissions-using conventional gasoline, SAE International Journal of Engines, 3(1), 750-767, 2010.
  • Arora J. K., Design of real-time combustion feedback system and experimental study of an RCCI engine for control, PhD diss., Michigan Technological University, 2016.
  • Liu H., Yao M., Zhang B. and Zheng Z., Effects of inlet pressure and octane numbers on combustion and emissions of a homogeneous charge compression ignition (HCCI) engine, Energy & Fuels, 22(4), 2207-2215, 2008.
  • Yao M., Zheng Z., Zhang B. and Chen Z., The effect of PRF fuel octane number on HCCI opeation, SAE Technical Paper, 2004-01-2992, 2004.
  • He B. Q., Liu M. B., Yuan J. and Zhao H., Combustion and emission characteristics of a HCCI engine fuelled with n-butanol-gasoline blends. Fuel, 108, 668-674, 2013.
  • Noguchi M., Tanaka Y., Tanaka T. and Takeuchi Y., A study on gasoline engine combustion by observation of intermediate reactive products during combustion, SAE Technical Paper, 1979-0840, 1979.
  • Heywood, J. B., Internal combustion engine fundamentals, McGraw-Hill, 1988.
  • Tsurushima, T., A new skeletal PRF kinetic model for HCCI combustion, Proceedings of the Combustion Institute, 32(2), 2835-2841, 2009.

HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi

Yıl 2022, , 1735 - 1750, 28.02.2022
https://doi.org/10.17341/gazimmfd.602742

Öz

Homojen dolgulu sıkıştırma ile
ateşlemeli (HCCI) motorların yüksek termik
verimleri ve düşük NOx emisyonları sebebiyle buji ile ateşlemeli
(SI) ve sıkıştırma ile ateşlemeli (CI) motorlara göre önemli üstünlükleri
bulunmaktadır. Ancak HCCI motorlarda yanma başlangıcının kontrol edilmesi
oldukça zordur. Bu çalışmada, dört silindirli SI motordan dönüştürülmüş olan
bir HCCI motoru kullanılmıştır. 373 K hava giriş sıcaklığı için, emme manifold
basıncının HCCI yanma üzerine etkileri deneysel olarak incelenmiştir. Deney
yakıtı olarak RON0, RON20 ve RON40 kullanılmıştır. Manifold basıncının
artmasıyla yanma başlangıcının avansa alındığı gözlenmiştir. Ayrıca oktan
sayısının değişiminin de yanma başlangıcı üzerine önemli etkileri olduğu
gözlenmiştir. En yüksek indike termik verim RON40 yakıtı kullanımında, 120 kPa
manifold basıncında %46,38 olarak kaydedilmiştir. Manifold basıncının
artırılmasına bağlı olarak volümetrik verimin de artması maksimum silindir içi
basınç ve ısı yayılımında artış sağlamıştır.

Kaynakça

  • Iida M., Hayashi M., Foster D. and Martin J., Characteristics of homogeneous charge compression ignition (HCCI) engine operation for variations in compression ratio, speed and intake temperature while using n-butane as a fuel, Journal of Engineering for Gas Turbines and Power, 125(2), 472-478, 2003.
  • Yılmaz E., Solmaz H., Polat S. and Altın M., Effect of the three-phase diesel emulsion fuels on engine performance and exhaust emissions, Journal of the Faculty of Engineering and Architecture of Gazi University, 28(1), 127-134, 2014.
  • Can O., Cinar C. and Sahin F., The investigation of the effects of premixed gasoline charge on HCCI-DI engine combustion and exhaust emissions, Journal of the Faculty of Engineering and Architecture of Gazi University, 24(2), 229-236, 2009.
  • Nagareddy S., Temperature distribution measurement on combustion chamber surface of diesel engine-experimental method, International Journal of Automotive Science and Technology, 1(3), 8-11, 2017.
  • Sharma T. K., Rao G. A. P. and Madhumurthy K., Enhancement of rate of heat transfer in HCCI engine with induction induced swirl and under varying compression ratios and boost pressures, Journal of Mechanical Science and Technology, 29(10), 4545-4553, 2015.
  • Epping K., Aceves S. M., Bechtold R. L. and Dec J. E., The potential of HCCI combustion for high efficiency and low emissions, SAE Technical Paper, 2002-01-1923, 2002.
  • Sharma T. K., Rao G. A. P. and Madhumurthy K., Combustion analysis of ethanol in HCCI engine, Trends in Mechanical Engineering and Technology, 3(1), 1-10, 2012.
  • Yap D., Karlovsky J., Megaritis A., Wyszynski M. and Xu H., An investigation into propane homogeneous charge compression ignition (HCCI) engine operation with residual gas trapping, Fuel, 84(18), 2372-2379, 2005.
  • Lu X., Hou Y., Zu L. and Huang Z., Experimental study on the auto-ignition and combustion characteristics in the homogeneous charge compression ignition (HCCI) combustion operation with ethanol/n-heptane blend fuels by port injection, Fuel, 85(17), 2622-2631, 2006.
  • Megaritis A., Yap D. and Wyszynski M., Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping, Energy, 32 (12), 2396-2400, 2007.
  • Arcoumanis C., Bae C., Crookes R. and Kinoshita E., The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review, Fuel, 87(7), 1014-1030, 2008.
  • Cinar C. and Uyumaz A., Cam design and manufacturing for a homogeneous charge compression ignition gasoline engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 29(1), 15-22, 2014.
  • Zhao H., HCCI and CAI engines for the automotive industry, Elsevier, 2007.
  • Cinar C., Uyumaz A., Solmaz H., Sahin F., Polat S. and Yilmaz E., Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels, Fuel Processing Technology, 130, 275-281, 2015.
  • He B. Q., Liu M. B. and Zhao H., Comparison of combustion characteristics of n-butanol/ethanol- gasoline blends in a HCCI engine, Energy Conversion and Management, 95, 101-109, 2015.
  • Solouk A., Shakiba-herfeh M., Kannan K., Solmaz H., Dice P., Bidarvatan M., Kondipati N. N. T. and Shahbakhti M., Fuel economy benefits of integrating a multi-mode low temperature combustion (LTC) engine in a series extended range electric powertrain, SAE Technical Paper, 2016-01-2361, 2016.
  • Haraldsson G., Tunestål P., Johansson B. and Hyvönen J., HCCI combustion phasing in a multi cylinder engine using variable compression ratio, SAE Technical Paper, 2002-01-2858, 2002.
  • Halis S., Nacak C., Solmaz H., Yılmaz E. and Yücesu H. S., Investigation of the effects of octane number on combustion characteristics and engine performance in a HCCI engine, Journal of Thermal Science and Technology, 38(2), 99-110, 2018.
  • Shaver G. M., Roelle M. and Gerdes J. C., Modeling cycle-to-cycle coupling in HCCI engines utilizing variable valve actuation, IFAC Proceedings Volumes, 37(22), 227-232, 2004.
  • Hamada K., Niijima S., Yoshida K., Shoji H., Shimada K. and Shibano K., The effects of the compression ratio, equivalence ratio and intake air temperature on ignition timing in a HCCI engine using DME fuel, SAE Technical Paper, 2005-32-0002, 2005.
  • Lu X. C., Chen W. and Huang Z., A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR: Part 1. The basic characteristics of HCCI combustion, Fuel, 84(9), 1074-1083, 2005.
  • Agrell F., Control of HCCI by aid of variable valve timings with specialization in usage of a non-linear quasi-static compensation, PhD diss., KTH, 2006.
  • Cinar C., Uyumaz A., Solmaz H. and Topgul T., Effects of valve lift on the combustion and emissions of a HCCI gasoline engine, Energy Conversion and Management, 94, 159-168, 2015.
  • Polat S., Kannan K., Shahbakhti M., Uyumaz A. and Yucesu H. S., An experimental study for the effects of supercharging on performance and combustion of an early direct injection HCCI engine, Second International Research Conference on Engineering, Science and Management, Dubai, 2015.
  • Polat S., Yucesu H. S., Kannan K., Uyumaz A., Solmaz H. and Shahbakhti M., Experimental comparison of different injection timings in an HCCI engine fueled with n-heptane, International Journal of Automotive Science and Technology, 1(1), 1-6, 2017.
  • Canakci M. and Reitz R. D., Experimental optimization of a DI-HCCI gasoline engine using split injections with fully-automated micro-genetic algorithms, International Journal of Engine Research, 4, 47-60, 2003.
  • Canakci M., An experimental study for the effects of boost pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine, Fuel, 87, 1503-1514, 2008.
  • Olsson J. O., Tunestal P. and Johansson B., Boosting for high load HCCI, SAE Technical Paper, 2004-01-0940, 2004.
  • Xu F., Wang Z., Yang D. B. and Wang J. X., Potential of high load extension for gasoline HCCI engine using boosting and exhaust gas recirculation, Energy & Fuels, 23, 2444-2452, 2009.
  • Bai G. and Ning H., Investigation of intake boost pressure effects on performance and exhaust exergy of a natural gas fueled HCCI combustion engine, International Journal of Engineering Innovations and Research, 7(2), 132-135, 2018.
  • Canakci M., Combustion characteristics of a DI-HCCI gasoline engine running at different boost pressures, Fuel, 96, 546-555, 2012.
  • Dec J. E. and Yang Y., Boosted HCCI for high power without engine knock and with ultra-low NOx emissions-using conventional gasoline, SAE International Journal of Engines, 3(1), 750-767, 2010.
  • Arora J. K., Design of real-time combustion feedback system and experimental study of an RCCI engine for control, PhD diss., Michigan Technological University, 2016.
  • Liu H., Yao M., Zhang B. and Zheng Z., Effects of inlet pressure and octane numbers on combustion and emissions of a homogeneous charge compression ignition (HCCI) engine, Energy & Fuels, 22(4), 2207-2215, 2008.
  • Yao M., Zheng Z., Zhang B. and Chen Z., The effect of PRF fuel octane number on HCCI opeation, SAE Technical Paper, 2004-01-2992, 2004.
  • He B. Q., Liu M. B., Yuan J. and Zhao H., Combustion and emission characteristics of a HCCI engine fuelled with n-butanol-gasoline blends. Fuel, 108, 668-674, 2013.
  • Noguchi M., Tanaka Y., Tanaka T. and Takeuchi Y., A study on gasoline engine combustion by observation of intermediate reactive products during combustion, SAE Technical Paper, 1979-0840, 1979.
  • Heywood, J. B., Internal combustion engine fundamentals, McGraw-Hill, 1988.
  • Tsurushima, T., A new skeletal PRF kinetic model for HCCI combustion, Proceedings of the Combustion Institute, 32(2), 2835-2841, 2009.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hamit Solmaz 0000-0003-0689-6824

Alper Calam 0000-0003-4125-2127

Serdar Halis 0000-0002-6099-7223

Duygu İpci 0000-0002-8862-7662

Emre Yılmaz 0000-0002-5653-2079

Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 6 Ağustos 2019
Kabul Tarihi 6 Kasım 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Solmaz, H., Calam, A., Halis, S., İpci, D., vd. (2022). HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(4), 1735-1750. https://doi.org/10.17341/gazimmfd.602742
AMA Solmaz H, Calam A, Halis S, İpci D, Yılmaz E. HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. GUMMFD. Şubat 2022;37(4):1735-1750. doi:10.17341/gazimmfd.602742
Chicago Solmaz, Hamit, Alper Calam, Serdar Halis, Duygu İpci, ve Emre Yılmaz. “HCCI Bir Motorda Emme Manifoldu basıncının Performans Ve Yanma Karakteristiklerine Etkilerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, sy. 4 (Şubat 2022): 1735-50. https://doi.org/10.17341/gazimmfd.602742.
EndNote Solmaz H, Calam A, Halis S, İpci D, Yılmaz E (01 Şubat 2022) HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 4 1735–1750.
IEEE H. Solmaz, A. Calam, S. Halis, D. İpci, ve E. Yılmaz, “HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi”, GUMMFD, c. 37, sy. 4, ss. 1735–1750, 2022, doi: 10.17341/gazimmfd.602742.
ISNAD Solmaz, Hamit vd. “HCCI Bir Motorda Emme Manifoldu basıncının Performans Ve Yanma Karakteristiklerine Etkilerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/4 (Şubat 2022), 1735-1750. https://doi.org/10.17341/gazimmfd.602742.
JAMA Solmaz H, Calam A, Halis S, İpci D, Yılmaz E. HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. GUMMFD. 2022;37:1735–1750.
MLA Solmaz, Hamit vd. “HCCI Bir Motorda Emme Manifoldu basıncının Performans Ve Yanma Karakteristiklerine Etkilerinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 37, sy. 4, 2022, ss. 1735-50, doi:10.17341/gazimmfd.602742.
Vancouver Solmaz H, Calam A, Halis S, İpci D, Yılmaz E. HCCI bir motorda emme manifoldu basıncının performans ve yanma karakteristiklerine etkilerinin incelenmesi. GUMMFD. 2022;37(4):1735-50.