Araştırma Makalesi
BibTex RIS Kaynak Göster

İstanbul kent içi elektrikli ulaşım sistemlerine yönelik enerji yönetim sistemi: cer tüketim performans takip sistemi öneri ve değerlendirmesi

Yıl 2022, , 889 - 906, 28.02.2022
https://doi.org/10.17341/gazimmfd.786144

Öz

Enerji verimliliği çalışmalarında iyileşmenin sürekliliğini sağlamak için Enerji Yönetim Sistemlerinin (EnYS) kurulması ve kullanılması tavsiye edilmektedir. Bu çalışmada, ulaşım sistemleri içerisinde elektrik tüketiminde ağırlıklı bir yere sahip olan ve ülkemizin en büyük kent içi raylı sistemi olan İstanbul kent içi elektrikli raylı ulaşım sistemleri (Metro, Tramvay ve Füniküler hatları) için önerilen EnYS tanıtılmıştır. Ayrıca EnYS kapsamında kurulan ölçme ve izleme sisteminden alınan ölçümlerle hangi verilerin ne şekilde değerlendirilebileceği ile ilgili örnekler sunulmuş, enerji verimliliği çalışmaları için işleyişle ilgili önerilerde bulunulmuştur. Çalışmada, İstanbul kent içi raylı ulaşım sistemlerine ait 6 metro, 3 tramvay, 1 füniküler, 2 teleferik hattı olmak üzere toplam 12 hattın enerji tüketimi incelenmiştir. Trenlerin teşkil ettiği hareketli sistemlerin (CER) toplam tüketimin %55-60’ını oluşturması sebebi ile ana tüketici olduğu, geri kalan tüketimlerin ise yardımcı tesisler olarak anılan istasyonlara ait aydınlatma-priz (%14-16), asansör-yürüyen merdiven (%6-8), havalandırma sistemleri (%6-8), ticari alanlar (%4-6) ile atölyeler (%3-5) ve idari ofislerde (%2-3) tüketildiği tespit edilmiştir. EnYS kapsamında hatların performanslarını belirlemek ve kıyaslamak için Enerji Performans Göstergeleri oluşturulmuş ve enerji verimliliğinde ki iyileşmenin sürekli ve maksimum olması hedeflenmiştir. Hatların CER performansları incelenmiş ve sefer süresi düzenlemesi ile ilk etapta %17’ ye varan oranlarda enerji tasarrufu sağlanabileceği hesaplanmıştır.

Kaynakça

  • [1] Koç, E., ŞENEL, M.C., Dünyada ve Türkiye’de Enerji Durumu – Genel Değerlendirme, Mühendis ve Makine Dergisi, 54 (639), ss.32-34, (2013).
  • [2] Koç, E., Kaplan, E. Dünyada ve Türkiye’de Genel Enerji Durumu-I Dünya Değerlendirmesi, Termodinamik Dergisi, 187,70-80, (2008).
  • [3] Enerji ve Tabii Kaynaklar Bakanlığı, “Ulusal Enerji Verimliliği Eylem Planı 2017-2023”, Ankara.
  • [4] EİGM., (2018). “2018 Yılı Ulusal Enerji Denge Tablosu” T.C Enerji ve Tabii Kaynaklar Bakanlığı Enerji İşleri Genel Müdürlüğü, Ankara. (2017).
  • [5] TMMOB, Dünyada ve Türkiye’de Enerji Verimliliği, Oda Raporu, MMO (589), ss.130, (2012).
  • [6] Çınar, T., Tekstil Sanayisinde Enerji Yönetimi ve Enerji Verimlilik Analizi. Yayınlanmış Yüksek Lisans Tezi. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı, Denizli. (2008).
  • [7] Çubuk, K.M., Türkmen, M., Ankara’da Raylı Ulaşım, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 18 (1), ss.1-2, (2003).
  • [8] V.R. Vuchic, Urban transit systems and technology, John Wiley & Sons, Hoboken. (2007).
  • [9] C.C. Chan, The state of the art of electric, hybrid, and fuel cell vehicles, P. IEEE. 95, ss.704–718, (2007).
  • [10] T. Koseki, Technologies for saving energy in railway operation: general discussion on energy issues concerning railway technology, IEEJ T. Electr. Electr. 5, ss.285–290, (2010).
  • [11] D.A. Nicola, M.A. Rosen, C.A. Bulucea, C. Brandusa, Some sustainability aspects of energy conversion in urban electric trains, Sustainability 2, ss.1389–1407, (2010).
  • [12] Ocak, İ., Manisalı, E., Kentsel Raylı Taşıma Üzerine Bir İnceleme (İstanbul Örneği), SAÜ Fen Bilimleri Enstitüsü Dergisi, 10 (2), ss.51-59, (2006).
  • [13] Yıldız A., Arıkan O. DC Elektrikli Raylı Sistemler İçin Teknik ve Ekonomik Açıdan Verimlilik Analizi. Avrupa Bilim ve Teknoloji Dergisi, (16), ss.729-739, (2019).
  • [14] IEA and UIC, Railway handbook – Energy consumption and CO2 emissions, International Energy Agency, 2012.
  • [15] Gonzales-Gil, A., Palacin, R., Batty, P. ve Powell, J.P., “A system approach to reduce urban rail energy consumptipn”, Energy Coversation and Management, 80, ss.509-524, (2014).
  • [16] Official Journal of the European Union, Decision No 406/2009/EC on the effort of Member States to reduce their greenhouse gas emissions to meet the Community’s greenhouse gas emission reduction commitments up to 2020, ss.136-141, (2009).
  • [17] European Commission, A Roadmap for moving to a competitive low carbon economy in 2050 – Ref. COM(2011) ss.112, (2011).
  • [18] Url-1 <https://www.metro.istanbul/icerik/hakkimizda>, alındığı tarih: 24.04.2019.
  • [19] Url-3 <http://www.ankarametrosu.com.tr/geneltnt.aspx>, alındığı tarih: 24.04.2019.
  • [20] Url-4 <http://www.ankaray.com.tr/ankaray-bilgileri/genel-tanitim>, alındığı tarih: 24.04.2019.
  • [21] Url-5 <https://www.izmirmetro.com.tr/Sayfa/13/1/tarihce>, alındığı tarih: 24.04.2019.
  • [22] Url-7 <https://adanaulasim.com.tr/rayli-sistem-hizmeti/>, alındığı tarih: 24.04.2019.
  • [23] Url-8 <http://www.antalyaulasim.com.tr/icerik/antray-hakkinda>, alındığı tarih: 24.04.2019.
  • [24] Url-9 <https://www.kayseriulasim.com/tr/kayseri-ulasim/yeni-rayli-sistem-hatlari>, alındığı tarih: 24.04.2019.
  • [25] Url-10 <http://atus.konya.bel.tr/tranvaytarihce.php?langCode=tr>, alındığı tarih: 24.04.2019.
  • [26] Url-11 <http://samulas.com.tr/hizmetler_hafif-rayli-sistem/>, alındığı tarih: 24.04.2019.
  • [27] Url-12 <http://www2.estram.com.tr/Cntnt/15>, alındığı tarih: 24.04.2019.
  • [28] Url-13 <https://www.burulas.com.tr/bursaray-hat-ozellikleri.aspx>, alındığı tarih: 24.04.2019
  • [29] Url-14 <https://www.burulas.com.tr/tramvay-bilgiler.aspx?VehicleType=218&ResultType=HatOzellikleri> , alındığı tarih: 24.04.2019
  • [30] Url-15 <http://gaziulas.com/Icerik.aspx?ID=19>, alındığı tarih: 24.04.2019
  • [31] Z. Tian, N. Zhao, S. Hillmansen, and C. Roberts., ” SmartDrive: Traction Energy Optimization and Applications in Rail Systems”, IEEE Transactıons on Intellıgent Transportatıon Systems, 20, (7), ss.2764-2773, 2019.
  • [32] Razik, L., Berr, N., Khayyam, S., Ponci, F. and Monti, A., “REM-S–Railway Energy Management in Real Rail Operation”, IEEE Transactıons on Vehıcular Technology, 68, (2), ss.1266 – 1277, (2019).
  • [33] X. Yang, X. Li, B. Ning, and T. Tang, (2016). “A survey on energy-efficient train operation for urban rail transit,” IEEE Trans. Intell. Transp. Syst., 17, (1), ss.2–13, (2016).
  • [34] A. Nasri, M. Fekri Moghadam, H. Mokhtari, Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems, In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion – SPEEDAM 2010, Pisa, Italy, ss.1218-1221, (2010).
  • [35] M. Peña-Alcaraz, A. Fernandez, A.P. Cucala, A. Ramos, R.R. Pecharroman, Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy, P. I. Mech. Eng. F-J Rai. 226, ss.397–408, (2011).
  • [36] J.R. Boizumeau, P. Leguay, E. Navarro, Braking energy recovery at the Rennes metro, In: Workshop on Braking Energy Recovery Systems – Ticket to Kyoto Project, Bielefeld, Germany, (2011).
  • [37] K.M. Kim, K.T. Kim, M.S. Han, A model and approaches for synchronized energy saving in timetabling, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, ss.1-8, (2011).
  • [38] F. Ciccarelli, A. Del Pizzo, and D. Iannuzzi. “Improvement of energy efficiency in light railway vehicles based on power management control of wayside lithium-ion capacitor storage,” IEEE Trans. Power Electron., vol. 29, no. 1, ss.275–286, (2014).
  • [39] T. Ratniyomchai, S. Hillmansen, and P. Tricoli. “Recent developments and applications of energy storage devices in electrified railways,” IET Elect. Syst. Transp., vol. 4, no. 1, ss. 9–20, (2014).
  • [40] S. de la Torre, A. J. Sánchez-Racero, J. A. Aguado, M. Reyes, and O. Martínez. “Optimal sizing of energy storage for regenerative braking in electric railway systems,” IEEE Trans. Power Syst., vol. 30, no. 3, ss. 1492–1500, (2015).
  • [41] R. Barrero, X. Tackoen, J. van Mierlo. Stationary or onboard energy storage systems for energy consumption reduction in a metro network, P. I. Mech. Eng. F-J Rai. 224, ss.207–25, (2010).
  • [42] M. Steiner, M. Klohr, S. Pagiela. Energy storage system with UltraCaps on board of railway vehicles, In: 2007 European Conference on Power Electronics and Applications – EPE, Aalborg, Denmark, ss.10, (2007).
  • [43] Albert, H., Levin, C., Vietrosa, E. ve Witte, G. “Reducing energy consumption in underground systems”, September, (1995).
  • [44] Ticket to Kyoto. Overview of quick wins implemented by partners in the public transport field, Ticket to Kyoto Project, (2011).
  • [45] R. Hathaway. Energy efficient train regulation on the Victoria Line, In: IMechE Railway Division Seminar "Gaining traction in Energy Efficiency", London, UK, (2012).
  • [46] S. Açikbaş, M.T. Söylemez. Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms, IET Electr. Power. App. 2, ss.172–182, (2008).
  • [47] Açıkbaş, M. Ve Söylemez, M.T. Energy Loss Comparison Between 750 VDC and 1500 VDC Power Supply Systems Using Rail Power Simulation, ss.959-960, (2004).
  • [48] Fuertes, A., Casals, M., Gangolells, M. ve Puigdollers, O. "Overcoming challanges for energy management in undergorund railway stations", European conference on product and process modelling, Reykjavik, ss.124-128 (2012).
  • [49] A. Giretti, M. Lemma, M. Vaccarini, R. Ansuini, R. Larghetti, S. Ruffini. Environmental modeling for the optimal energy control of subway stations, In: World Conference on Robotics and Automation in Construction – ISG*ISARC2012, Eindhoven, The Netherlands, ss.1, (2012).
  • [50] Açıkbaş, S., Alataş A. Raylı Sistemlerde Enerji Verimli Sürüş ve Frenleme Enerjisinin Geri Kazanılması, Türkiye 10. Enerji Kongresi, İstanbul. ss.237-245, (2006).
  • [51] TS EN ISO 50001, TSE. Enerji Yönetim Sistemleri–Şartlar ve Kullanım İçin Kılavuz, ICS 27.010. ss.1-2, (2013).
  • [52] https://www.metro.istanbul/Hatlarimiz?hatturu=metro
  • [53] İSÇAN, S., ÜNVER, Ü., GÜNEŞ, T. İstanbul Kent İçi Elektrikli Raylı Ulaşım Sistemlerine Ait Elektrik Enerjisi Tüketimleri İçin Enerji Analizi ve Yönetiminin Yapılması, 4. Uluslararası Mühendislik Mimarlık ve Tasarım Kongresi, İstanbul. ss. 1453, (2019)
  • [54] İSÇAN, S. Metro İstanbul Enerji Yönetim Sisteminin Oluşturulması, Modellenmesi ve Değerlendirilmesi. Yayınlanmış Yüksek Lisans Tezi. Yalova Üniversitesi Fen Bilimleri Enstitüsü Enerji Sistemleri Mühendisliği Anabilim Dalı, Yalova, (2019).
  • [55] T. Albrecht. Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control, Adv. Transport. 15, ss.885–894, (2004).
  • [56] J.F. Chen, R.L. Lin, Y.C. Liu. Optimization of an MRT train schedule – Reducing maximum traction power by using genetic algorithms, IEEE T. Power Syst. 20, ss.1366–1372, (2005).
  • [57] M. Chymera, A. Renfrew, M. Barnes. Analyzing the potential of energy storage on electrified transit systems, In: 8th World Congress of Railway Research – WCRR, Seoul, South Korea, (2008).
  • [58] R. Barrero, J. van Mierlo, X. Tackoen. Energy savings in public transport, IEEE Veh. Technol. Mag. 3, ss.26–36, (2008).
  • [59] M. Domínguez, A.P. Cucala, A. Fernández, R.R. Pecharromán, J. Blanquer. Energy efficiency on train control – design of metro ATO driving and impact of energy accumulation devices, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, ss.22-26, (2011).
  • [60] F. Ciccarelli, D. Iannuzzi, P. Tricoli. Control of metro-trains equipped with onboard supercapacitors for energy saving and reduction of power peak demand, Transport. Res. C-Emer. 24, ss.36–49, (2012).
  • [61] D. Iannuzzi, P. Tricoli. Speed-based state-of-charge tracking control for metro trains with onboard supercapacitors, IEEE T. Power Electr. 27, ss.2129–2140, (2012).
  • [62] M. Steiner, J. Scholten. Energy storage on board of DC fed railway vehicles, In: IEEE Annual Power Electronics Specialists Conference – PESC, Aachen, Germany, ss.666-672, (2004).
  • [63] J.P. Moskowitz, J.L. Cohuau. STEEM: ALSTOM and RATP experience of supercapacitors in tramway operation, In: IEEE Vehicle Power and Propulsion Conference – VPPC 2010, Lille, France, (2010).
  • [64] A. Rufer, D. Hotellier, P. Barrade. A supercapacitor-based energy storage substation for voltage compensation in weak transportation networks, IEEE T. Power Deliver. 19, ss.629–636, (2004).
  • [65] B. Destraz, P. Barrade, A. Rufer, M. Klohr. Study and simulation of the energy balance of an urban transportation network, In: 2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, (2007).
  • [66] H. Lee, J. Song, H. Lee, C. Lee, G. Jang, G. Kim. Capacity optimization of the supercapacitor energy storages on DC railway system using a railway powerflow algorithm, Int. J. Innov. Comput. I. 7, ss.2739–2753, (2011).
  • [67] R. Teymourfar, B. Asaei, H. Iman-Eini, R. Nejati fard. Stationary super-capacitor energy storage system to save regenerative braking energy in a metro line, Energ. Convers. Manage. 56, ss.206– 214, (2012).
  • [68] D. Iannuzzi, D. Lauria, F. Ciccarelli. Wayside ultracapacitors storage design for light transportation systems: A multiobjective optimization approach, Int. Rev. Electr. Eng.-I. 8, ss.190–199, (2013).
  • [69] D. Iannuzzi, F. Ciccarelli, D. Lauria. Stationary ultracapacitors storage device for improving energy saving and voltage profile of light transportation networks, Transport. Res. C-Emer. 21, ss.321–337, (2012).
  • [70] S. Vazquez, S.M. Lukic , E. Galvan, L.G. Franquelo, J.M. Carrasco. Energy storage systems for transport and grid applications, IEEE T. Ind. Electron. 17, ss.3881–3895, (2010).
  • [71] A. González-Gil, R. Palacin, P. Batty. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy, Energ. Convers. Manage. 75 , ss.374–388, (2013).
  • [72] M. Ogasa. Application of energy storage technologies for electric railway vehicles – examples with hybrid electric railway vehicles, IEEJ T. Electr. Electr. 5, ss.304–311, (2010).
  • [73] K. Ogura, K. Nishimura, T. Matsumura, C. Tonda, E. Yoshiyama, M. Andriani, W. Francis, R.A. Schmitt, A. Visgotis, N. Gianfrancesco. Test results of a high capacity wayside energy storage system using Ni-MH batteries for DC electric railway at New York City Transit, In: IEEE Green Technologies Conference – Green 2011, Baton Rouge, USA, (2011).
  • [74] M. Meinert. New mobile energy storage system for rolling stock, In: 13th European Conference on Power Electronics and Applications – EPE'09, Barcelona, Spain, (2009)
  • [75] B. Bolund, H. Bernhoff, M. Leijon. Flywheel energy and power storage systems, Renew. Sust. Energ. Rev. 11, ss.235–258, (2007).
  • [76] J. Tzeng, R. Emerson, P. Moy. Composite flywheels for energy storage, Compos. Sci. Technol. 66, ss.2520–2527, (2006).
  • [77] J.M. Ortega, H. Ibaiondo. Kinetic energy recovery on railway systems with feedback to the grid, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [78] Y. Warin, R. Lanselle, M. Thiounn. Active substation, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [79] D. Cornic. Efficient recovery of braking energy through a reversible dc substation, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [80] F.T. Alves, C.L. Pires. Energy saving strategy in São Paulo metro, In: IET Conference on Railway Traction Systems – RTS 2010, Birmingham, UK, (2010).
  • [81] Y.V. Bocharnikov, A.M. Tobias, C. Roberts, S. Hilmansen S, C.J. Goodman. Optimal driving strategy for traction energy saving on DC suburban railways, IET Electr. Power. App. 1, ss.675–682, (2007).
  • [82] Y. Ding, H. Liu, Y. Bai, F. Zhou. A two-level optimization model and algorithm for energyefficient urban train operation, J. Transport. Syst. Eng. Inf. Tech. 11, ss.96–101, (2011).
  • [83] H.J. Chuang, C.S. Chen, C.H. Lin, C.H. Hsieh, C.Y. Ho. Design of optimal coasting speed for saving social cost in mass rapid transit systems, In: 3rd International Conference on Deregulation and Restructuring and Power Technologies – DRPT 2008, Nianjing, China, ss.2833-2839, (2008).
  • [84] G. Malavasi, P. Palleschi, S. Ricci. Driving and operation strategies for traction-energy saving in mass rapid transit systems, P. I. Mech. Eng. F-J. Rai. 225, ss.475–482, (2011).
  • [85] B.R. Ke, C.L. Lin, C.C. Yang. Optimisation of train energy-efficient operation for mass rapid transit systems, IET Intell. Transp. Syst. 6, ss.58–66, (2012).
  • [86] M. Miyatake, H. Ko. Optimization of train speed profile for minimum energy consumption, IEEJ T. Electr. Electr. 5, ss.263–269, (2010).
  • [87] H.H. Hoang, M.P. Polis, A. Haurie. Reducing energy consumption through trajectory optimization for a metro network, IEEE T. Automat. Contr. AC-20, ss.590–595, (1975).
  • [88] M.A. Duarte, P.X. Sotomayor. Minimum energy trajectories for subway systems, Optim. Control Appl. Meth. 20, ss.283–296, (1999).
  • [89] B.R. Ke, M.C. Chen, C.L. Lin. Block-layout design using max-min ant system for saving energy on mass rapid transit systems, IEEE T. Intell. Transp. Syst. 10, ss.226–235, (2009).
  • [90] J. Sandor, E. Wiebe, M. Bergendorff, V. Recagno, R. Nolte. Smart and efficient energy solutions for railways – The "Railenergy" results, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [91] J. Jin, R. Kadhim. Driver advisory information for energy management and regulation, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [92] K.K. Wong, T.K. Ho. Dynamic coast control of train movement with genetic algorithm, Int. J. Syst. Sci. 35, ss.835–846, (2004).
  • [93] M. Domínguez, A. Fernández, A.P. Cucala, P. Lukaszewicz. Optimal design of metro automatic train operation speed profiles for reducing energy consumption, P. I. Mech. Eng. F-J. Rai. 225, ss.463–473, (2011).
  • [94] C.S. Chang, S.S. Sim. Optimising train movements through coast control using genetic algorithms, IEE Proc.-B. 144, ss.65–72, (1997).
  • [95] D. Hartland. Heating the countryside or saving the kilowatt hours? In: IMechE Railway Division Seminar "Gaining traction in Energy Efficiency", London, UK., (2012).
  • [96] M. Tomita, Y. Fukumoto, K. Suzuki, M. Miryata. Development of prototype DC superconducting cable for railway system, Physica C Supercond. 470, ss.1007–1008, (2010).
  • [97] K. Kondo. Recent energy saving technologies on railway traction systems, IEEJ T. Electr. Electr. 5, ss.298–303, (2010).
  • [98] M. Kondo, Y. Shimizu, J. Kawamura. Development of totally enclosed permanent magnet synchronous motor, Q. Rep. RTRI, 49, ss.16–19, (2008).
  • [99] Z. Peroutka, K. Zeman, F. Krůs, F. Košta. New generation of trams with gearless wheel PMSM drives: From simple diagnostics to sensorless control, In: 14th International Power Electronics and Motion Control Conference – EPE-PEMC 2010, Ohrid, Macedonia, (2010).
  • [100] J. Germishuizen, A. Jöckei, T. Hoffmann, M. Teichmann, L. Löwenstein, F.V. Wangelin. Syntegra™ – Next generation traction drive system, total integration of traction, bogie and braking technology, In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion – SPEEDAM 2006, Taormina, Italy, (2006).
  • [101] O. Koerner, A. Binder. Feasibility of a group drive with two permanent magnet synchronous traction motors for commuter trains, EPE Journal 14, ss.32–37, (2004).
  • [102] M. Barcaro, M. Fornasiero, N. Bianchi, S. Bolognani. Design procedure of IPM motor drive for railway traction, In: IEEE International Electric Machines and Drives Conference – IEMDC 2011, Niagara Falls, Canada, (2011).
  • [103] D. Uzel, Z. Peroutka. Control and design considerations for wheel mounted drive of tram: Interesting features offered by IPMSM technology, In: 14th International Power Electronics and Motion Control Conference – EPE-PEMC 2010, Ohrid, Macedonia, (2010).
  • [104] Toshiba Corporation. Energy efficient traction system utilizing permanent magnet synchronous motor (PMSM), In: IMechE Railway Division Seminar "Gaining traction in Energy Efficiency", London, UK, (2012).
  • [105] C. Chéron, M. Walter, J. Sandor, E. Wiebe. ERRAC – European railway energy roadmap: towards 2030, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [106] J.J. Carruthers, M. Calomfirescu, P. Ghys, J. Prockat. The application of a systematic approach to material selection for the lightweighting of metro vehicles, P. I. Mech. Eng. F-J. Rai. 223, ss.427–437, (2009).
  • [107] B. Eickhoff, R. Nowell. Determining the benefit of train mass reduction, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [108] M. Robinson, J. Carruthers. Composites for lightweighting in mass transit applications, JEC Compos. Mag. 43, ss.35–37, (2006).
  • [109] C.W. Hudson, J.J. Carruthers, A.M. Robinson. Multiple objective optimisation of composite sandwich structures for rail vehicle floor panels, Compos. Struct. 92, ss.2077–2082, (2010).
  • [110] J. Carruthers, C. O'Neill, S. Ingleton, M. Robinson, M. Grasso, J. Roberts, J. Prockat, G. Simmonds. The design and prototyping of a lightweight crashworthy rail vehicle driver's cab, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [111] R.M. Goodall, W. Kortüm. Mechatronic developments for railway vehicles of the future, Control Eng. Pract. 10, ss.887–898, (2002).
  • [112] W. Gunselmann. Technologies for increased energy efficiency in railway systems, In: 2005 European Conference on Power Electronics and Applications – EPE 2005, Dresden, Germany, (2005).
  • [113] R. Baetens, B.P. Jelle, A. Gustavsen. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review, Sol. Energ. Mat. Sol. C. 94, ss.87–105, (2010).
  • [114] H. Amri, R.N. Hofstädter, M. Kozek. Energy efficient design and simulation of a demand controlled heating and ventilation unit in a metro vehicle, In: IEEE Forum on Integrated and Sustainable Transportation Systems – FISTS 2011, Vienna, Austria, (2011).
  • [115] S.B. Kwon, D. Park, Y. Cho, E.Y. Park. Measurement of natural ventilation rate in Seoul metropolitan subway cabin, Indoor Built Environ. 19, ss.366–374, (2010).
  • [116] W. Li, J. Sun. Numerical simulation and analysis of transport air conditioning system integrated with passenger compartment, Appl. Therm. Eng. 50, ss.37–45, (2013).
  • [117] M. Kumar, I.N. Kar. Design of model-based optimizing control scheme for an air-conditioning system, HVAC&R Res. 16, ss.565–597, (2010).
  • [118] X. Wang, X. Yuang. Reuse of condensed water to improve the performance of an air-cycle refrigeration system for transport applications, Appl. Energ. 84, ss.874–881, (2007).
  • [119] N. Javani, I. Dincer, G.F. Naterer. Thermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles, Energy 46, ss.109–116, (2012).
Yıl 2022, , 889 - 906, 28.02.2022
https://doi.org/10.17341/gazimmfd.786144

Öz

Kaynakça

  • [1] Koç, E., ŞENEL, M.C., Dünyada ve Türkiye’de Enerji Durumu – Genel Değerlendirme, Mühendis ve Makine Dergisi, 54 (639), ss.32-34, (2013).
  • [2] Koç, E., Kaplan, E. Dünyada ve Türkiye’de Genel Enerji Durumu-I Dünya Değerlendirmesi, Termodinamik Dergisi, 187,70-80, (2008).
  • [3] Enerji ve Tabii Kaynaklar Bakanlığı, “Ulusal Enerji Verimliliği Eylem Planı 2017-2023”, Ankara.
  • [4] EİGM., (2018). “2018 Yılı Ulusal Enerji Denge Tablosu” T.C Enerji ve Tabii Kaynaklar Bakanlığı Enerji İşleri Genel Müdürlüğü, Ankara. (2017).
  • [5] TMMOB, Dünyada ve Türkiye’de Enerji Verimliliği, Oda Raporu, MMO (589), ss.130, (2012).
  • [6] Çınar, T., Tekstil Sanayisinde Enerji Yönetimi ve Enerji Verimlilik Analizi. Yayınlanmış Yüksek Lisans Tezi. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı, Denizli. (2008).
  • [7] Çubuk, K.M., Türkmen, M., Ankara’da Raylı Ulaşım, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 18 (1), ss.1-2, (2003).
  • [8] V.R. Vuchic, Urban transit systems and technology, John Wiley & Sons, Hoboken. (2007).
  • [9] C.C. Chan, The state of the art of electric, hybrid, and fuel cell vehicles, P. IEEE. 95, ss.704–718, (2007).
  • [10] T. Koseki, Technologies for saving energy in railway operation: general discussion on energy issues concerning railway technology, IEEJ T. Electr. Electr. 5, ss.285–290, (2010).
  • [11] D.A. Nicola, M.A. Rosen, C.A. Bulucea, C. Brandusa, Some sustainability aspects of energy conversion in urban electric trains, Sustainability 2, ss.1389–1407, (2010).
  • [12] Ocak, İ., Manisalı, E., Kentsel Raylı Taşıma Üzerine Bir İnceleme (İstanbul Örneği), SAÜ Fen Bilimleri Enstitüsü Dergisi, 10 (2), ss.51-59, (2006).
  • [13] Yıldız A., Arıkan O. DC Elektrikli Raylı Sistemler İçin Teknik ve Ekonomik Açıdan Verimlilik Analizi. Avrupa Bilim ve Teknoloji Dergisi, (16), ss.729-739, (2019).
  • [14] IEA and UIC, Railway handbook – Energy consumption and CO2 emissions, International Energy Agency, 2012.
  • [15] Gonzales-Gil, A., Palacin, R., Batty, P. ve Powell, J.P., “A system approach to reduce urban rail energy consumptipn”, Energy Coversation and Management, 80, ss.509-524, (2014).
  • [16] Official Journal of the European Union, Decision No 406/2009/EC on the effort of Member States to reduce their greenhouse gas emissions to meet the Community’s greenhouse gas emission reduction commitments up to 2020, ss.136-141, (2009).
  • [17] European Commission, A Roadmap for moving to a competitive low carbon economy in 2050 – Ref. COM(2011) ss.112, (2011).
  • [18] Url-1 <https://www.metro.istanbul/icerik/hakkimizda>, alındığı tarih: 24.04.2019.
  • [19] Url-3 <http://www.ankarametrosu.com.tr/geneltnt.aspx>, alındığı tarih: 24.04.2019.
  • [20] Url-4 <http://www.ankaray.com.tr/ankaray-bilgileri/genel-tanitim>, alındığı tarih: 24.04.2019.
  • [21] Url-5 <https://www.izmirmetro.com.tr/Sayfa/13/1/tarihce>, alındığı tarih: 24.04.2019.
  • [22] Url-7 <https://adanaulasim.com.tr/rayli-sistem-hizmeti/>, alındığı tarih: 24.04.2019.
  • [23] Url-8 <http://www.antalyaulasim.com.tr/icerik/antray-hakkinda>, alındığı tarih: 24.04.2019.
  • [24] Url-9 <https://www.kayseriulasim.com/tr/kayseri-ulasim/yeni-rayli-sistem-hatlari>, alındığı tarih: 24.04.2019.
  • [25] Url-10 <http://atus.konya.bel.tr/tranvaytarihce.php?langCode=tr>, alındığı tarih: 24.04.2019.
  • [26] Url-11 <http://samulas.com.tr/hizmetler_hafif-rayli-sistem/>, alındığı tarih: 24.04.2019.
  • [27] Url-12 <http://www2.estram.com.tr/Cntnt/15>, alındığı tarih: 24.04.2019.
  • [28] Url-13 <https://www.burulas.com.tr/bursaray-hat-ozellikleri.aspx>, alındığı tarih: 24.04.2019
  • [29] Url-14 <https://www.burulas.com.tr/tramvay-bilgiler.aspx?VehicleType=218&ResultType=HatOzellikleri> , alındığı tarih: 24.04.2019
  • [30] Url-15 <http://gaziulas.com/Icerik.aspx?ID=19>, alındığı tarih: 24.04.2019
  • [31] Z. Tian, N. Zhao, S. Hillmansen, and C. Roberts., ” SmartDrive: Traction Energy Optimization and Applications in Rail Systems”, IEEE Transactıons on Intellıgent Transportatıon Systems, 20, (7), ss.2764-2773, 2019.
  • [32] Razik, L., Berr, N., Khayyam, S., Ponci, F. and Monti, A., “REM-S–Railway Energy Management in Real Rail Operation”, IEEE Transactıons on Vehıcular Technology, 68, (2), ss.1266 – 1277, (2019).
  • [33] X. Yang, X. Li, B. Ning, and T. Tang, (2016). “A survey on energy-efficient train operation for urban rail transit,” IEEE Trans. Intell. Transp. Syst., 17, (1), ss.2–13, (2016).
  • [34] A. Nasri, M. Fekri Moghadam, H. Mokhtari, Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems, In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion – SPEEDAM 2010, Pisa, Italy, ss.1218-1221, (2010).
  • [35] M. Peña-Alcaraz, A. Fernandez, A.P. Cucala, A. Ramos, R.R. Pecharroman, Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy, P. I. Mech. Eng. F-J Rai. 226, ss.397–408, (2011).
  • [36] J.R. Boizumeau, P. Leguay, E. Navarro, Braking energy recovery at the Rennes metro, In: Workshop on Braking Energy Recovery Systems – Ticket to Kyoto Project, Bielefeld, Germany, (2011).
  • [37] K.M. Kim, K.T. Kim, M.S. Han, A model and approaches for synchronized energy saving in timetabling, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, ss.1-8, (2011).
  • [38] F. Ciccarelli, A. Del Pizzo, and D. Iannuzzi. “Improvement of energy efficiency in light railway vehicles based on power management control of wayside lithium-ion capacitor storage,” IEEE Trans. Power Electron., vol. 29, no. 1, ss.275–286, (2014).
  • [39] T. Ratniyomchai, S. Hillmansen, and P. Tricoli. “Recent developments and applications of energy storage devices in electrified railways,” IET Elect. Syst. Transp., vol. 4, no. 1, ss. 9–20, (2014).
  • [40] S. de la Torre, A. J. Sánchez-Racero, J. A. Aguado, M. Reyes, and O. Martínez. “Optimal sizing of energy storage for regenerative braking in electric railway systems,” IEEE Trans. Power Syst., vol. 30, no. 3, ss. 1492–1500, (2015).
  • [41] R. Barrero, X. Tackoen, J. van Mierlo. Stationary or onboard energy storage systems for energy consumption reduction in a metro network, P. I. Mech. Eng. F-J Rai. 224, ss.207–25, (2010).
  • [42] M. Steiner, M. Klohr, S. Pagiela. Energy storage system with UltraCaps on board of railway vehicles, In: 2007 European Conference on Power Electronics and Applications – EPE, Aalborg, Denmark, ss.10, (2007).
  • [43] Albert, H., Levin, C., Vietrosa, E. ve Witte, G. “Reducing energy consumption in underground systems”, September, (1995).
  • [44] Ticket to Kyoto. Overview of quick wins implemented by partners in the public transport field, Ticket to Kyoto Project, (2011).
  • [45] R. Hathaway. Energy efficient train regulation on the Victoria Line, In: IMechE Railway Division Seminar "Gaining traction in Energy Efficiency", London, UK, (2012).
  • [46] S. Açikbaş, M.T. Söylemez. Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms, IET Electr. Power. App. 2, ss.172–182, (2008).
  • [47] Açıkbaş, M. Ve Söylemez, M.T. Energy Loss Comparison Between 750 VDC and 1500 VDC Power Supply Systems Using Rail Power Simulation, ss.959-960, (2004).
  • [48] Fuertes, A., Casals, M., Gangolells, M. ve Puigdollers, O. "Overcoming challanges for energy management in undergorund railway stations", European conference on product and process modelling, Reykjavik, ss.124-128 (2012).
  • [49] A. Giretti, M. Lemma, M. Vaccarini, R. Ansuini, R. Larghetti, S. Ruffini. Environmental modeling for the optimal energy control of subway stations, In: World Conference on Robotics and Automation in Construction – ISG*ISARC2012, Eindhoven, The Netherlands, ss.1, (2012).
  • [50] Açıkbaş, S., Alataş A. Raylı Sistemlerde Enerji Verimli Sürüş ve Frenleme Enerjisinin Geri Kazanılması, Türkiye 10. Enerji Kongresi, İstanbul. ss.237-245, (2006).
  • [51] TS EN ISO 50001, TSE. Enerji Yönetim Sistemleri–Şartlar ve Kullanım İçin Kılavuz, ICS 27.010. ss.1-2, (2013).
  • [52] https://www.metro.istanbul/Hatlarimiz?hatturu=metro
  • [53] İSÇAN, S., ÜNVER, Ü., GÜNEŞ, T. İstanbul Kent İçi Elektrikli Raylı Ulaşım Sistemlerine Ait Elektrik Enerjisi Tüketimleri İçin Enerji Analizi ve Yönetiminin Yapılması, 4. Uluslararası Mühendislik Mimarlık ve Tasarım Kongresi, İstanbul. ss. 1453, (2019)
  • [54] İSÇAN, S. Metro İstanbul Enerji Yönetim Sisteminin Oluşturulması, Modellenmesi ve Değerlendirilmesi. Yayınlanmış Yüksek Lisans Tezi. Yalova Üniversitesi Fen Bilimleri Enstitüsü Enerji Sistemleri Mühendisliği Anabilim Dalı, Yalova, (2019).
  • [55] T. Albrecht. Reducing power peaks and energy consumption in rail transit systems by simultaneous train running time control, Adv. Transport. 15, ss.885–894, (2004).
  • [56] J.F. Chen, R.L. Lin, Y.C. Liu. Optimization of an MRT train schedule – Reducing maximum traction power by using genetic algorithms, IEEE T. Power Syst. 20, ss.1366–1372, (2005).
  • [57] M. Chymera, A. Renfrew, M. Barnes. Analyzing the potential of energy storage on electrified transit systems, In: 8th World Congress of Railway Research – WCRR, Seoul, South Korea, (2008).
  • [58] R. Barrero, J. van Mierlo, X. Tackoen. Energy savings in public transport, IEEE Veh. Technol. Mag. 3, ss.26–36, (2008).
  • [59] M. Domínguez, A.P. Cucala, A. Fernández, R.R. Pecharromán, J. Blanquer. Energy efficiency on train control – design of metro ATO driving and impact of energy accumulation devices, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, ss.22-26, (2011).
  • [60] F. Ciccarelli, D. Iannuzzi, P. Tricoli. Control of metro-trains equipped with onboard supercapacitors for energy saving and reduction of power peak demand, Transport. Res. C-Emer. 24, ss.36–49, (2012).
  • [61] D. Iannuzzi, P. Tricoli. Speed-based state-of-charge tracking control for metro trains with onboard supercapacitors, IEEE T. Power Electr. 27, ss.2129–2140, (2012).
  • [62] M. Steiner, J. Scholten. Energy storage on board of DC fed railway vehicles, In: IEEE Annual Power Electronics Specialists Conference – PESC, Aachen, Germany, ss.666-672, (2004).
  • [63] J.P. Moskowitz, J.L. Cohuau. STEEM: ALSTOM and RATP experience of supercapacitors in tramway operation, In: IEEE Vehicle Power and Propulsion Conference – VPPC 2010, Lille, France, (2010).
  • [64] A. Rufer, D. Hotellier, P. Barrade. A supercapacitor-based energy storage substation for voltage compensation in weak transportation networks, IEEE T. Power Deliver. 19, ss.629–636, (2004).
  • [65] B. Destraz, P. Barrade, A. Rufer, M. Klohr. Study and simulation of the energy balance of an urban transportation network, In: 2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, (2007).
  • [66] H. Lee, J. Song, H. Lee, C. Lee, G. Jang, G. Kim. Capacity optimization of the supercapacitor energy storages on DC railway system using a railway powerflow algorithm, Int. J. Innov. Comput. I. 7, ss.2739–2753, (2011).
  • [67] R. Teymourfar, B. Asaei, H. Iman-Eini, R. Nejati fard. Stationary super-capacitor energy storage system to save regenerative braking energy in a metro line, Energ. Convers. Manage. 56, ss.206– 214, (2012).
  • [68] D. Iannuzzi, D. Lauria, F. Ciccarelli. Wayside ultracapacitors storage design for light transportation systems: A multiobjective optimization approach, Int. Rev. Electr. Eng.-I. 8, ss.190–199, (2013).
  • [69] D. Iannuzzi, F. Ciccarelli, D. Lauria. Stationary ultracapacitors storage device for improving energy saving and voltage profile of light transportation networks, Transport. Res. C-Emer. 21, ss.321–337, (2012).
  • [70] S. Vazquez, S.M. Lukic , E. Galvan, L.G. Franquelo, J.M. Carrasco. Energy storage systems for transport and grid applications, IEEE T. Ind. Electron. 17, ss.3881–3895, (2010).
  • [71] A. González-Gil, R. Palacin, P. Batty. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy, Energ. Convers. Manage. 75 , ss.374–388, (2013).
  • [72] M. Ogasa. Application of energy storage technologies for electric railway vehicles – examples with hybrid electric railway vehicles, IEEJ T. Electr. Electr. 5, ss.304–311, (2010).
  • [73] K. Ogura, K. Nishimura, T. Matsumura, C. Tonda, E. Yoshiyama, M. Andriani, W. Francis, R.A. Schmitt, A. Visgotis, N. Gianfrancesco. Test results of a high capacity wayside energy storage system using Ni-MH batteries for DC electric railway at New York City Transit, In: IEEE Green Technologies Conference – Green 2011, Baton Rouge, USA, (2011).
  • [74] M. Meinert. New mobile energy storage system for rolling stock, In: 13th European Conference on Power Electronics and Applications – EPE'09, Barcelona, Spain, (2009)
  • [75] B. Bolund, H. Bernhoff, M. Leijon. Flywheel energy and power storage systems, Renew. Sust. Energ. Rev. 11, ss.235–258, (2007).
  • [76] J. Tzeng, R. Emerson, P. Moy. Composite flywheels for energy storage, Compos. Sci. Technol. 66, ss.2520–2527, (2006).
  • [77] J.M. Ortega, H. Ibaiondo. Kinetic energy recovery on railway systems with feedback to the grid, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [78] Y. Warin, R. Lanselle, M. Thiounn. Active substation, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [79] D. Cornic. Efficient recovery of braking energy through a reversible dc substation, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [80] F.T. Alves, C.L. Pires. Energy saving strategy in São Paulo metro, In: IET Conference on Railway Traction Systems – RTS 2010, Birmingham, UK, (2010).
  • [81] Y.V. Bocharnikov, A.M. Tobias, C. Roberts, S. Hilmansen S, C.J. Goodman. Optimal driving strategy for traction energy saving on DC suburban railways, IET Electr. Power. App. 1, ss.675–682, (2007).
  • [82] Y. Ding, H. Liu, Y. Bai, F. Zhou. A two-level optimization model and algorithm for energyefficient urban train operation, J. Transport. Syst. Eng. Inf. Tech. 11, ss.96–101, (2011).
  • [83] H.J. Chuang, C.S. Chen, C.H. Lin, C.H. Hsieh, C.Y. Ho. Design of optimal coasting speed for saving social cost in mass rapid transit systems, In: 3rd International Conference on Deregulation and Restructuring and Power Technologies – DRPT 2008, Nianjing, China, ss.2833-2839, (2008).
  • [84] G. Malavasi, P. Palleschi, S. Ricci. Driving and operation strategies for traction-energy saving in mass rapid transit systems, P. I. Mech. Eng. F-J. Rai. 225, ss.475–482, (2011).
  • [85] B.R. Ke, C.L. Lin, C.C. Yang. Optimisation of train energy-efficient operation for mass rapid transit systems, IET Intell. Transp. Syst. 6, ss.58–66, (2012).
  • [86] M. Miyatake, H. Ko. Optimization of train speed profile for minimum energy consumption, IEEJ T. Electr. Electr. 5, ss.263–269, (2010).
  • [87] H.H. Hoang, M.P. Polis, A. Haurie. Reducing energy consumption through trajectory optimization for a metro network, IEEE T. Automat. Contr. AC-20, ss.590–595, (1975).
  • [88] M.A. Duarte, P.X. Sotomayor. Minimum energy trajectories for subway systems, Optim. Control Appl. Meth. 20, ss.283–296, (1999).
  • [89] B.R. Ke, M.C. Chen, C.L. Lin. Block-layout design using max-min ant system for saving energy on mass rapid transit systems, IEEE T. Intell. Transp. Syst. 10, ss.226–235, (2009).
  • [90] J. Sandor, E. Wiebe, M. Bergendorff, V. Recagno, R. Nolte. Smart and efficient energy solutions for railways – The "Railenergy" results, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [91] J. Jin, R. Kadhim. Driver advisory information for energy management and regulation, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [92] K.K. Wong, T.K. Ho. Dynamic coast control of train movement with genetic algorithm, Int. J. Syst. Sci. 35, ss.835–846, (2004).
  • [93] M. Domínguez, A. Fernández, A.P. Cucala, P. Lukaszewicz. Optimal design of metro automatic train operation speed profiles for reducing energy consumption, P. I. Mech. Eng. F-J. Rai. 225, ss.463–473, (2011).
  • [94] C.S. Chang, S.S. Sim. Optimising train movements through coast control using genetic algorithms, IEE Proc.-B. 144, ss.65–72, (1997).
  • [95] D. Hartland. Heating the countryside or saving the kilowatt hours? In: IMechE Railway Division Seminar "Gaining traction in Energy Efficiency", London, UK., (2012).
  • [96] M. Tomita, Y. Fukumoto, K. Suzuki, M. Miryata. Development of prototype DC superconducting cable for railway system, Physica C Supercond. 470, ss.1007–1008, (2010).
  • [97] K. Kondo. Recent energy saving technologies on railway traction systems, IEEJ T. Electr. Electr. 5, ss.298–303, (2010).
  • [98] M. Kondo, Y. Shimizu, J. Kawamura. Development of totally enclosed permanent magnet synchronous motor, Q. Rep. RTRI, 49, ss.16–19, (2008).
  • [99] Z. Peroutka, K. Zeman, F. Krůs, F. Košta. New generation of trams with gearless wheel PMSM drives: From simple diagnostics to sensorless control, In: 14th International Power Electronics and Motion Control Conference – EPE-PEMC 2010, Ohrid, Macedonia, (2010).
  • [100] J. Germishuizen, A. Jöckei, T. Hoffmann, M. Teichmann, L. Löwenstein, F.V. Wangelin. Syntegra™ – Next generation traction drive system, total integration of traction, bogie and braking technology, In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion – SPEEDAM 2006, Taormina, Italy, (2006).
  • [101] O. Koerner, A. Binder. Feasibility of a group drive with two permanent magnet synchronous traction motors for commuter trains, EPE Journal 14, ss.32–37, (2004).
  • [102] M. Barcaro, M. Fornasiero, N. Bianchi, S. Bolognani. Design procedure of IPM motor drive for railway traction, In: IEEE International Electric Machines and Drives Conference – IEMDC 2011, Niagara Falls, Canada, (2011).
  • [103] D. Uzel, Z. Peroutka. Control and design considerations for wheel mounted drive of tram: Interesting features offered by IPMSM technology, In: 14th International Power Electronics and Motion Control Conference – EPE-PEMC 2010, Ohrid, Macedonia, (2010).
  • [104] Toshiba Corporation. Energy efficient traction system utilizing permanent magnet synchronous motor (PMSM), In: IMechE Railway Division Seminar "Gaining traction in Energy Efficiency", London, UK, (2012).
  • [105] C. Chéron, M. Walter, J. Sandor, E. Wiebe. ERRAC – European railway energy roadmap: towards 2030, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [106] J.J. Carruthers, M. Calomfirescu, P. Ghys, J. Prockat. The application of a systematic approach to material selection for the lightweighting of metro vehicles, P. I. Mech. Eng. F-J. Rai. 223, ss.427–437, (2009).
  • [107] B. Eickhoff, R. Nowell. Determining the benefit of train mass reduction, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [108] M. Robinson, J. Carruthers. Composites for lightweighting in mass transit applications, JEC Compos. Mag. 43, ss.35–37, (2006).
  • [109] C.W. Hudson, J.J. Carruthers, A.M. Robinson. Multiple objective optimisation of composite sandwich structures for rail vehicle floor panels, Compos. Struct. 92, ss.2077–2082, (2010).
  • [110] J. Carruthers, C. O'Neill, S. Ingleton, M. Robinson, M. Grasso, J. Roberts, J. Prockat, G. Simmonds. The design and prototyping of a lightweight crashworthy rail vehicle driver's cab, In: 9th World Congress on Railway Research – WCRR 2011, Lille, France, (2011).
  • [111] R.M. Goodall, W. Kortüm. Mechatronic developments for railway vehicles of the future, Control Eng. Pract. 10, ss.887–898, (2002).
  • [112] W. Gunselmann. Technologies for increased energy efficiency in railway systems, In: 2005 European Conference on Power Electronics and Applications – EPE 2005, Dresden, Germany, (2005).
  • [113] R. Baetens, B.P. Jelle, A. Gustavsen. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review, Sol. Energ. Mat. Sol. C. 94, ss.87–105, (2010).
  • [114] H. Amri, R.N. Hofstädter, M. Kozek. Energy efficient design and simulation of a demand controlled heating and ventilation unit in a metro vehicle, In: IEEE Forum on Integrated and Sustainable Transportation Systems – FISTS 2011, Vienna, Austria, (2011).
  • [115] S.B. Kwon, D. Park, Y. Cho, E.Y. Park. Measurement of natural ventilation rate in Seoul metropolitan subway cabin, Indoor Built Environ. 19, ss.366–374, (2010).
  • [116] W. Li, J. Sun. Numerical simulation and analysis of transport air conditioning system integrated with passenger compartment, Appl. Therm. Eng. 50, ss.37–45, (2013).
  • [117] M. Kumar, I.N. Kar. Design of model-based optimizing control scheme for an air-conditioning system, HVAC&R Res. 16, ss.565–597, (2010).
  • [118] X. Wang, X. Yuang. Reuse of condensed water to improve the performance of an air-cycle refrigeration system for transport applications, Appl. Energ. 84, ss.874–881, (2007).
  • [119] N. Javani, I. Dincer, G.F. Naterer. Thermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles, Energy 46, ss.109–116, (2012).
Toplam 119 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sercan İsçan Bu kişi benim 0000-0002-9619-3841

Ümit Ünver 0000-0002-6968-6181

Taylan Güneş 0000-0002-9543-5482

Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 27 Ağustos 2020
Kabul Tarihi 23 Ağustos 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA İsçan, S., Ünver, Ü., & Güneş, T. (2022). İstanbul kent içi elektrikli ulaşım sistemlerine yönelik enerji yönetim sistemi: cer tüketim performans takip sistemi öneri ve değerlendirmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(2), 889-906. https://doi.org/10.17341/gazimmfd.786144
AMA İsçan S, Ünver Ü, Güneş T. İstanbul kent içi elektrikli ulaşım sistemlerine yönelik enerji yönetim sistemi: cer tüketim performans takip sistemi öneri ve değerlendirmesi. GUMMFD. Şubat 2022;37(2):889-906. doi:10.17341/gazimmfd.786144
Chicago İsçan, Sercan, Ümit Ünver, ve Taylan Güneş. “İstanbul Kent içi Elektrikli ulaşım Sistemlerine yönelik Enerji yönetim Sistemi: Cer tüketim Performans Takip Sistemi öneri Ve değerlendirmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, sy. 2 (Şubat 2022): 889-906. https://doi.org/10.17341/gazimmfd.786144.
EndNote İsçan S, Ünver Ü, Güneş T (01 Şubat 2022) İstanbul kent içi elektrikli ulaşım sistemlerine yönelik enerji yönetim sistemi: cer tüketim performans takip sistemi öneri ve değerlendirmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 2 889–906.
IEEE S. İsçan, Ü. Ünver, ve T. Güneş, “İstanbul kent içi elektrikli ulaşım sistemlerine yönelik enerji yönetim sistemi: cer tüketim performans takip sistemi öneri ve değerlendirmesi”, GUMMFD, c. 37, sy. 2, ss. 889–906, 2022, doi: 10.17341/gazimmfd.786144.
ISNAD İsçan, Sercan vd. “İstanbul Kent içi Elektrikli ulaşım Sistemlerine yönelik Enerji yönetim Sistemi: Cer tüketim Performans Takip Sistemi öneri Ve değerlendirmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/2 (Şubat 2022), 889-906. https://doi.org/10.17341/gazimmfd.786144.
JAMA İsçan S, Ünver Ü, Güneş T. İstanbul kent içi elektrikli ulaşım sistemlerine yönelik enerji yönetim sistemi: cer tüketim performans takip sistemi öneri ve değerlendirmesi. GUMMFD. 2022;37:889–906.
MLA İsçan, Sercan vd. “İstanbul Kent içi Elektrikli ulaşım Sistemlerine yönelik Enerji yönetim Sistemi: Cer tüketim Performans Takip Sistemi öneri Ve değerlendirmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 37, sy. 2, 2022, ss. 889-06, doi:10.17341/gazimmfd.786144.
Vancouver İsçan S, Ünver Ü, Güneş T. İstanbul kent içi elektrikli ulaşım sistemlerine yönelik enerji yönetim sistemi: cer tüketim performans takip sistemi öneri ve değerlendirmesi. GUMMFD. 2022;37(2):889-906.