Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 1817 - 1830, 02.09.2021
https://doi.org/10.17341/gazimmfd.799556

Öz

Kaynakça

  • Cortes, C., Vapnik, V., Support vector networks, Machine learning, 20, p.273-297, 1995.
  • Ertekin, S., Bottou, L., Giles, C. L., Nonconvex online support vector machines IEEE transactions on pattern analysis and machine intelligence, 2033, p.368-381, 2011.
  • Cevikalp, H., Triggs, Large margin classifiers based on convex class models, IEEE 12th international conference on computer vision workshops, p.101-108, 2009.
  • Cevikalp, H., Triggs, B., Hyperdisk based large margin classifier, Pattern recognition, 46, 6 p.1523-1531, 2013.
  • Cevikalp, H., Triggs, Jurie, F., Polikar, R., Margin-based discriminant dimensionality reduction for visual recognition. IEEE conference on computer vision and pattern recognition, p.1-8, 2008.
  • Tax D.M.J., Duin, R.P.W., Support vector data description, Machine Learning, 54, p.45-66, 2004.
  • Cevikalp, H., Triggs, B., Visual object detection using cascades of binary and one-class classifiers. International journal of computer vision, 12, p.334-349, 2017.
  • Mangasarian O.L., Wild, E.W., Multisurface proximal support vector machine classification via generalized eigenvalues, IEEE Transactions on pattern analysis and machine intelliegence, 28, p.69-74, 2006.
  • Jayadeva, Khemchandani, R., Chandra, S., Twin support vector machines for pattern classification, IEEE transactions on pattern analysis and machine intelliegence, 29, p.905-910, 2007.
  • Cevikalp H., Best fitting hyperplanes for classification, IEEE Transactions on Pattern Analysis and Machine Intelligence. 39, 6, p.1076-1088, 2016.
  • Vedaldi, A., Zisserman, A., Efficient additive kernels via explicit feature maps, ıeee transactions on pattern analysis and machine intelligence, 34, p.480-492, 2012.
  • Rahimi, A., Recht, B., Random features for large-scale kernel machines, advances in neural information processing systems, p. 1177-1184, 2007.
  • Dundar, MM., Wolf, M., Lakare, S., Salganicoff, M., Raykar, VC, Polyhedral classifier for target detection: A case study: Colorectal cancer, International Conference on Machine Learning, p.288-295, 2008.
  • Bagirov, A.M., Ugon, J., Webb, D., Ozturk, G., Kasimbeyli, R., A novel piecewise linear classifier based on polyhedral conic and max–min separabilities, TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 21,1, p.3-24, 2013.
  • Gasimov, R., Ozturk, G., Separation via polyhedral conic functions, Optimization methods & software, 21, 4, p.527-540, 2006.
  • Cevikalp, H., Triggs, B., Polyhedral conic classifiers for visual object detection and classification, 2017 IEEE Conference on Computer Vision and Pattern Recognition, 123, 3, p. 4114-4122, 2017.
  • Cevikalp H., Saglamlar H., Polyhedral conic classifiers for computer vision applications and open set recognition, IEEE transactions on pattern analysis and machine intelligence, doi: 10.1109/tpami.2019.2934455 (in press), 2019.
  • Ozturk, G., Ciftci, T., Clustering based polyhedral conic functions algorithm in classification, Journal of Industrial & Management Optimization, 11, 3, p.921-932, 2015.
  • Cimen, E., Ozturk, G., Gerek, O., Incremental conic functions algorithm for large scale classification problems, Digital Signal Processing, 77, p.187-194, 2017.
  • Cimen, E., Ozturk, G., O-PCF algorithm for one-class classification, Optimization Methods and Software, doi:10.1080/10556788.2019.1581191, 2019.
  • Ozturk, G., Cimen, E., Polyhedral conic kernel-like functions for SVMs, Turkish journal of electrical engineering & computer sciences, 27, p.1172-1180, 2019.
  • Dordinejad, G. G., Çevikalp, H., Cone vertex estimation in polyhedral conic classifiers, 2017 25th Signal Processing and Communications Applications Conference, p.1-4, 2017.
  • Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A., The PASCAL visual object classes challenge, International journal of computer vision, 88, 2, p.303-338, 2010.
  • Chang, C., Lin, C., Libsvm: A library for support vector machines, ACM Trans Intell Syst Technol, 2, p.1-39, 2011.
  • Yalcin, M., Cevikalp, H., Yavuz, H.S., Towards large-scale face recognition based on videos, International Conference on Computer Vision Workshops 2015, p.1078-1085, 2015.

Karmaşık verileri sınıflandırabilen çok merkezli çok yüzlü konik sınıflandırıcılar

Yıl 2021, , 1817 - 1830, 02.09.2021
https://doi.org/10.17341/gazimmfd.799556

Öz

Çok yüzlü konik sınıflandırıcılar destek vektör makineleriyle karşılaştırıldığında başarısıyla ve basitliği korumasıyla ön plana çıkmaktadır. Bu sınıflandırıcılarda bir tepe noktası olan koni fonksiyonu kullanılmaktadır. İyi seçilmiş bir tepe noktası bir bölgede toparlanan pozitif verilerin sıkıca çevrelenebilmesini sağlar. Aynı sınıfa ait pozitif verilerin farklı bölgelerde öbeklendiği durumlarda ise tek bir sınıflandırıcı yeterli olmamakta, birden fazla sınıflandırıcıya ihtiyaç duyulmaktadır. Bu çalışmada tek bir sınıflandırıcı kullanarak farklı bölgelerde öbeklenen pozitif verileri sınıflandırmak amacıyla çok merkezli çok yüzlü konik sınıflandırıcı (MCPCC) yöntemi geliştirilmiştir. Karşılaştırma yapabilmek için önerilen sınıflandırıcı ve benzer yöntemlerle deneyler gerçekleştirilmiştir. Elde edilen sonuçlarda MCPCC yönteminin başarılı sonuçlar verdiği gözlemlenmiştir.

Kaynakça

  • Cortes, C., Vapnik, V., Support vector networks, Machine learning, 20, p.273-297, 1995.
  • Ertekin, S., Bottou, L., Giles, C. L., Nonconvex online support vector machines IEEE transactions on pattern analysis and machine intelligence, 2033, p.368-381, 2011.
  • Cevikalp, H., Triggs, Large margin classifiers based on convex class models, IEEE 12th international conference on computer vision workshops, p.101-108, 2009.
  • Cevikalp, H., Triggs, B., Hyperdisk based large margin classifier, Pattern recognition, 46, 6 p.1523-1531, 2013.
  • Cevikalp, H., Triggs, Jurie, F., Polikar, R., Margin-based discriminant dimensionality reduction for visual recognition. IEEE conference on computer vision and pattern recognition, p.1-8, 2008.
  • Tax D.M.J., Duin, R.P.W., Support vector data description, Machine Learning, 54, p.45-66, 2004.
  • Cevikalp, H., Triggs, B., Visual object detection using cascades of binary and one-class classifiers. International journal of computer vision, 12, p.334-349, 2017.
  • Mangasarian O.L., Wild, E.W., Multisurface proximal support vector machine classification via generalized eigenvalues, IEEE Transactions on pattern analysis and machine intelliegence, 28, p.69-74, 2006.
  • Jayadeva, Khemchandani, R., Chandra, S., Twin support vector machines for pattern classification, IEEE transactions on pattern analysis and machine intelliegence, 29, p.905-910, 2007.
  • Cevikalp H., Best fitting hyperplanes for classification, IEEE Transactions on Pattern Analysis and Machine Intelligence. 39, 6, p.1076-1088, 2016.
  • Vedaldi, A., Zisserman, A., Efficient additive kernels via explicit feature maps, ıeee transactions on pattern analysis and machine intelligence, 34, p.480-492, 2012.
  • Rahimi, A., Recht, B., Random features for large-scale kernel machines, advances in neural information processing systems, p. 1177-1184, 2007.
  • Dundar, MM., Wolf, M., Lakare, S., Salganicoff, M., Raykar, VC, Polyhedral classifier for target detection: A case study: Colorectal cancer, International Conference on Machine Learning, p.288-295, 2008.
  • Bagirov, A.M., Ugon, J., Webb, D., Ozturk, G., Kasimbeyli, R., A novel piecewise linear classifier based on polyhedral conic and max–min separabilities, TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, 21,1, p.3-24, 2013.
  • Gasimov, R., Ozturk, G., Separation via polyhedral conic functions, Optimization methods & software, 21, 4, p.527-540, 2006.
  • Cevikalp, H., Triggs, B., Polyhedral conic classifiers for visual object detection and classification, 2017 IEEE Conference on Computer Vision and Pattern Recognition, 123, 3, p. 4114-4122, 2017.
  • Cevikalp H., Saglamlar H., Polyhedral conic classifiers for computer vision applications and open set recognition, IEEE transactions on pattern analysis and machine intelligence, doi: 10.1109/tpami.2019.2934455 (in press), 2019.
  • Ozturk, G., Ciftci, T., Clustering based polyhedral conic functions algorithm in classification, Journal of Industrial & Management Optimization, 11, 3, p.921-932, 2015.
  • Cimen, E., Ozturk, G., Gerek, O., Incremental conic functions algorithm for large scale classification problems, Digital Signal Processing, 77, p.187-194, 2017.
  • Cimen, E., Ozturk, G., O-PCF algorithm for one-class classification, Optimization Methods and Software, doi:10.1080/10556788.2019.1581191, 2019.
  • Ozturk, G., Cimen, E., Polyhedral conic kernel-like functions for SVMs, Turkish journal of electrical engineering & computer sciences, 27, p.1172-1180, 2019.
  • Dordinejad, G. G., Çevikalp, H., Cone vertex estimation in polyhedral conic classifiers, 2017 25th Signal Processing and Communications Applications Conference, p.1-4, 2017.
  • Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A., The PASCAL visual object classes challenge, International journal of computer vision, 88, 2, p.303-338, 2010.
  • Chang, C., Lin, C., Libsvm: A library for support vector machines, ACM Trans Intell Syst Technol, 2, p.1-39, 2011.
  • Yalcin, M., Cevikalp, H., Yavuz, H.S., Towards large-scale face recognition based on videos, International Conference on Computer Vision Workshops 2015, p.1078-1085, 2015.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Halil Sağlamlar 0000-0003-2805-1929

Yayımlanma Tarihi 2 Eylül 2021
Gönderilme Tarihi 24 Eylül 2020
Kabul Tarihi 14 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Sağlamlar, H. (2021). Karmaşık verileri sınıflandırabilen çok merkezli çok yüzlü konik sınıflandırıcılar. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(4), 1817-1830. https://doi.org/10.17341/gazimmfd.799556
AMA Sağlamlar H. Karmaşık verileri sınıflandırabilen çok merkezli çok yüzlü konik sınıflandırıcılar. GUMMFD. Eylül 2021;36(4):1817-1830. doi:10.17341/gazimmfd.799556
Chicago Sağlamlar, Halil. “Karmaşık Verileri sınıflandırabilen çok Merkezli çok yüzlü Konik sınıflandırıcılar”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, sy. 4 (Eylül 2021): 1817-30. https://doi.org/10.17341/gazimmfd.799556.
EndNote Sağlamlar H (01 Eylül 2021) Karmaşık verileri sınıflandırabilen çok merkezli çok yüzlü konik sınıflandırıcılar. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 4 1817–1830.
IEEE H. Sağlamlar, “Karmaşık verileri sınıflandırabilen çok merkezli çok yüzlü konik sınıflandırıcılar”, GUMMFD, c. 36, sy. 4, ss. 1817–1830, 2021, doi: 10.17341/gazimmfd.799556.
ISNAD Sağlamlar, Halil. “Karmaşık Verileri sınıflandırabilen çok Merkezli çok yüzlü Konik sınıflandırıcılar”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/4 (Eylül 2021), 1817-1830. https://doi.org/10.17341/gazimmfd.799556.
JAMA Sağlamlar H. Karmaşık verileri sınıflandırabilen çok merkezli çok yüzlü konik sınıflandırıcılar. GUMMFD. 2021;36:1817–1830.
MLA Sağlamlar, Halil. “Karmaşık Verileri sınıflandırabilen çok Merkezli çok yüzlü Konik sınıflandırıcılar”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 36, sy. 4, 2021, ss. 1817-30, doi:10.17341/gazimmfd.799556.
Vancouver Sağlamlar H. Karmaşık verileri sınıflandırabilen çok merkezli çok yüzlü konik sınıflandırıcılar. GUMMFD. 2021;36(4):1817-30.