Isıl Enerji Depolama Uygulamaları için n-heptedekan@MgCO3 ve n-heptadekan@MgCO3@Ag Mikrokapsüllerinin Yeşil Kimya ile Sentezi
Yıl 2022,
, 1111 - 1120, 28.02.2022
Sedat Emir
,
Halime Paksoy
Öz
Günümüzde termal enerji depolamanın öneminin artmasıyla birlikte, faz değiştiren maddelerin (FDM’lerin) iyileştirme çalışmaları da önem kazanmıştır. Bu çalışmada, n-heptedekan doğada bolca bulunan magnezyum karbonat (MgCO3) minerali ile kapsüllenmiştir ve bu kapsüllerin iletkenliğini artırmak için gümüş ile kaplanmıştır. Bu amaçla MgCO3 ve MgCO3@Ag kabuk materyali içeren kapsüllerin termal, fiziksel ve kimyasal farklılıkları kıyaslanmıştır. Sentezlenen mikrokapsüllerin, MgCO3’e özgü çubuk yapısında kümelenerek tanımlanmış bir çekirdek@kabuk mikro yapısı ile iyi bir morfoloji sunmuştur Kapsüllerin termal karakterizasyonu analizi sonucunda ise, gizli ısı depolama kapasitesi kabul edilebilir değerde ve erime-donma sıcaklığı çekirdek madde ile uyumlu olduğu bulunmuştur. FDM’nin (n-heptadekan) termal iletkenliğin MgCO3 ve MgCO3@Ag kabuklarıyla, sırası ile yaklaşık 3 kat ve 4 kat arttırıldığı görülmüştür. Bu sonuçlar gösteriyor ki; bina iklimlendirme uygulamalarında kullanılabilecek çevreye zararsız, ucuz ve iyi termal özellikte kapsüller sentezlenmiştir.
Destekleyen Kurum
Çukurova Üniversitesi Bilimsel Araştırma ve Projeler Birimi
Proje Numarası
FDK-2019-12047
Teşekkür
Çalışmalarım sırasında sarf malzeme ve kimyasallar için maddi imkan sağlayan Çukurova Üniversitesi Bilimsel Araştırma ve Projeler Birimi FDK-2019-12047 numaralı projeye ve YÖK 100-2000 Doktora Bursu ile burs imkanı sağlayan Yüksek Öğretim Kurumuna teşekkür ederim.
Kaynakça
- Referans1
[1]Renewables 2018, Global Status Report
- Referans2
[2]Belen Zalba., Jose M. Marin., J., Cabeza, L. F., Harald Mehling (2013). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appiled Thermal Engineering, 20, 251-283
- Referans3
[3]Khudhair, A. M., & Farid, M. M. (2004). A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy conversion and management, 45(2), 263-275.
- Referans4
[4]Benoît Stutz, Nolwenn Le Pierres, Frédéric Kuznik, Kevyn Johannes, Elena Palomo Del Barrio, Jean-Pierre Bédécarrats, Stéphane Gibout, Philippe Marty, Laurent Zalewski, Jerome Soto, Nathalie Mazet, Régis Olives, Jean-Jacques Bezian, Doan Pham Minh (2017). Storage of thermal solar energy, Comptes Rendus Physique, 18. 401-414.
- Referans5
[5]Matlack, A., Introduction to Green Chemistry, Second Edition, 1 January 2010, Pages 1-587.
- Referans6
[6]Beyhan, B., Cellat, K., Konuklu, Y., Gungor, C., Karahan, O., Dundar, C., & Paksoy, H. (2017). Robust microencapsulated phase change materials in concrete mixes for sustainable buildings. International Journal of Energy Research, 41(1), 113-126.
- Referans7
[7]Konuklu, Y., & Paksoy, H. O. (2015). The preparation and characterization of chitosan–gelatin microcapsules and microcomposites with fatty acids as thermal energy storage materials. Energy Technology, 3(5), 503-508.
- Referans8
[8]Guo, Y., Yang, W., Jiang, Z., He, F., Zhang, K., He, R., Wu, J & Fan, J. (2019). Silicone rubber/paraffin@silicon dioxide form-stable phase change materials with thermal energy storage and enhanced mechanical property. Solar Energy Materials and Solar Cells, 196, 16-24.
- Referans9
[9]Fang, Y., Yu, H., Wan, W., Gao, X., Zhang, Z. (2013). Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials. Energy Conversion and Management, 76, 430-436. doi: 10.1016/j.enconman.2013.07.060
- Referans10
[10]Mert, M. S., Mert, H. H., & Sert, M. (2019). Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage. Journal of Thermal Analysis and Calorimetry, 136(4), 1551-1561.
- Referans11
[11]MariaDoloresRomero-Sanchez, Radu-Robert Piticescu, Adrian Mihail Motoc, Francisca Aran-Ais, and Albert IoanTudor (2018). Green chemistry solutions for sol–gel micro-encapsulation of phasechangematerialsforhightemperaturethermalenergystorage, Manufacturing Rev. 5, 8.
- Referans12
[12]Shiyu Yu, Xiaodong Wang, Dezhen Wu (2014) Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation, Applied Energy, 114. 632–643.
- Referans13
[13]Hao Wang, Yu Li, Liang Zhao, Xinghong Shi, Guolin Song, Guoyi Tang (2018) A facile approach to synthesize microencapsulated phase change materials embedded with silver nanoparticle for both thermal energy storage and antimicrobial purpose, Energy, 158 .1052-1059.
- Referans14
[14]Wenjin Ding, JingOuyang, HuamingYang (2016) Synthesis and characterization of nesquehonite (MgCO3·3H2O) powders from natural talc, PowderTechnology, 292, 169–175.
- Referans15
[15]Paul T. Anastas, John Charles Warner, Green Chemistry: Theory and Practice, Oxford University Press, 1998-135 pages.
- Referans16
[16]Zhang, H., Wang, X., & Wu, D. (2010). Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. Journal of colloid and interface science, 343(1), 246-255.
- Referans17
[17]Fang, G., Chen, Z., & Li, H. (2010). Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials. Chemical engineering journal, 163(1-2), 154-159.
- Referans18
[18]Şahan, N., & Paksoy, H. (2020). Designing behenic acid microcapsules as novel phase change material for thermal energy storage applications at medium temperature. International Journal of Energy Research, 44(5), 3922-3933.