Research Article
BibTex RIS Cite

Yapılı dolgulu kolonda sıvı ve gaz fazı kütle transfer katsayıları ve ara yüzey alanı

Year 2020, Volume: 35 Issue: 3, 1333 - 1352, 07.04.2020
https://doi.org/10.17341/gazimmfd.640984

Abstract

Son
yıllarda karbondioksitin (CO2) giderimi ve yapılı dolgulu kolonlarla ilgili çalışmalar ön plana çıkmaktadır. Bu doğrultuda yapılan bu çalışmada,
kendi imkanlarımızla tasarlanarak imal edilen yeni özgün bir yapılı dolgulu
kolonunun hidrodinamik ve kütle transfer katsayılarının karakterizasyonu yer
almaktadır. İlk olarak basınç düşüşü ölçümleri ile kolonun yükleme ve taşma noktaları
tespit edilmiş ve kolona beslenecek sıvı ve gaz akış hızlarının limitleri
saptanmıştır. Sıvı ve gaz akış hızları için bu aralıklar sırasıyla 0,002-0,0047
[m/s] ve 0,07-0,68 [m/s] olarak belirlenmiştir. Belirlenen gaz ve sıvı akış
hızlarında, sıvı tarafı
ve gaz tarafı bazlı bireysel fiziksel
hacimsel kütle transfer katsayıları
deneysel olarak elde edilmiştir. Daha
sonra iki direnç teorisi ile CO2-su sistemi için gaz tarafı bazlı
toplu fiziksel hacimsel kütle transfer katsayısı
 hesaplanmıştır. Ayrıca belirlenen gaz ve sıvı
akış hızı aralıklarında, CO2 ve sodyum hidroksit çözeltisi sistemi
ile deneyler yapılarak gaz tarafı bazlı toplu kimyasal hacimsel kütle transfer
katsayıları
, Hatta sayıları (Ha) ve artış
faktörleri (E) hesaplanmıştır. Bu kimyasal sistem için elde edilen deneysel
bulgular,  hızlı sözde birinci dereceden
reaksiyon rejiminin kabul edilebilir olduğunu göstermiştir. Son olarak farklı
gaz ve sıvı akış hızlarında dolguların etkin ara yüzey alanı
 değerleri de belirlenmiştir.

References

  • 1. IEA (International Energy Agency), Global energy and CO2 status report – 2017, March 2018.
  • 2. Intergovernmental Panel on Climate Change (IPCC) Special Report of Global warming of 1.5°C, 2018.
  • 3. PBL Netherlands Environmental Assessment Agency, Trends in global CO2 and total greenhouse gas emissions-2017 report, The Hague, PBL publication number: 2674, 2017.
  • 4. Kohl A. L., Nielsen R. Gas Purification, 5th ed., Vol. viii.Gulf Publishing, Houston, TX, 1997.
  • 5. Anwar M.N., Fayyaz A., Sohail N.F., Khokhar M.F., Baqar M., Khan W.D., Rasool K., Rehan M., Nizami A.S., CO2 capture and storage: a way forward for sustainable environment, J. Environ. Manage. 226,131–144, 2018.
  • 6. Koytsoumpa E.I., Bergins C., Kakaras E., The CO2 economy: review of CO2 capture and reuse technologies, J. Supercrit. Fluids, 132, 3–16, 2018.
  • 7. Cuellar-Franca R.M., Azapagic A., Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts, J. CO2 Util. 9, 82–102, 2015.
  • 8. Yang W., Yu X., Mi J., Wang W., Chen J., Mass transfer performance of structured packings in a CO2 absorption tower, Chin. J. Chem. Eng., 23, 42–49, 2015.
  • 9. Raza A., Gholami R., Rezaee R., Rasouli V., Rabiei M., Petroleum, 2018. https://doi.org/10.1016/j.petlm.2018.12.007.
  • 10. Leung D.Y., Caramanna G., Maroto-Valer M.M., An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy. Rev., 39, 426–443, 2014.
  • 11. Aroonwilas A., Tontiwachwuthikul P., Mechanistic model for prediction of structured packing mass transfer performance in CO2 absorption with chemical reactions, Chem. Eng. Sci, 3651-3663, 2000.
  • 12. Alix P., Raynal L., Abbe F., Meyer M., Prevost M., Rouzineau D., Mass transfer and hydrodynamic characteristics of new carbon carbon packing: application to CO2 post-combustion capture, Chem. Eng. Res. Des., 89, 1658–1668, 2011.
  • 13. Brunazzi E., Paglianti A., Liquid-film mass-transfer coefficient in a column equipped with structured packings, Ind. Eng. Chem. Res., 36, 3792-3799, 1997.
  • 14. Laso M., Brito H.M., Bomio P., von Stockar U., Liquid-side mass transfer characteristics of a structured packing, Chem. Eng. J., 58, 251-258, 1995.
  • 15. Olujić Z., Kamerbeek A.B., de Graauw j., A corrugation geometry based model for efficiency of structured distillation packing, Chem. Eng. Process., 38, 683–695, 1999.
  • 16. Kunze A.K., Lutze P., Kopatschek M., Mackowiak J.F., Mackowiak J., Grünewald M., Górak A., Mass transfer measurements in absorption and desorption: determination of mass transfer parameters, Chem. Eng. Res. Des., 104: 440–452, 2015.
  • 17. Valenz L., Rejl F.J. Síma J. Linek V., Absorption mass-transfer characteristics of mellapak packings series, Ind. Eng. Chem. Res., 50, 12134–12142, 2011.
  • 18. Aroonwilas A., Tontiwachwuthikul P., Chakma A., Effects of operating and design parameters on CO2 absorption in columns with structured packings, Sep. Purif. Technol. 24, 403–411, 2001.
  • 19. Gorak A., Olujić Z., Distillation: Equipment and Processes. Chapter-4: Structured Packings, Academic Press is an imprint of Elsevier, 2014.
  • 20. Rousseau R.W., Handbook of Separation Process Technology, 1st Edition, John Wiley & Sons, Inc., USA, 1987.
  • 21. Perry R.H., Green D. W., Perry's Chemical Engineers' Handbook, 7th Edition, Section 14, McGraw-Hill Professional, 1997.
  • 22. Smith R.,Chemical Process Design and Integration, 2nd Edition, Part 8, Wiley, 2016.
  • 23. Olujić Z.,Seibert A.F., Fair J.R., Influence of corrugation geometry on the performance of structured packings: an experimental study, Chem. Eng. Process. Process Intensif., 39, 335-342, 2000.
  • 24. Wang C., Perry M., Seibert F., Rochelle G.T., Characterization of novel structured packings for CO2 capture, Energy Procedia, 37, 2145–2153, 2013.
  • 25. Uysal B.Z., Kütle Transferi Uygulama ve Esasları. 3. Baskı, Gazi Kitabevi, Ankara, 2019.
  • 26. Kister H.Z., Distillation Design, McGraw-Hill, New York, 1992.
  • 27. Zakeri A., Einbu A., Svendsen H. F., Experimental investigation of pressure drop in structured packings, Chem. Eng. Sci., 73, 285–298, 2012.
  • 28. Mackowiak J.,Fluid dynamics of packed columns, principles of the fluid dynamic design of columns for gas/liquid and liquid/liquid systems, Springer-Verlag, Berlin Heidelberg, 2010.
  • 29. Olujić Z., Jansen H., Kaibel B., Rietfort T., Zich E., Stretching the capacity of structured packings, Ind. Eng. Chem. Res. 40, 6172–6180, 2001.
  • 30. Minnie U.L., Effect of liquid and gas physical properties on the hydrodynamics of packed columns, Master of Thesis, Stellenbosch University, Faculty of Engineering, Chemical Engineering Department, 2017.
  • 31. Hoffmann A., Mackowiak J.F., Gorak A., Haase M., Loning J.M., Runiwski T., Hallenberger K., Standardization of mass transfer measurements a basis for the description of absorption processes, Chem. Eng. Res. 85, 40, 2007.
  • 32. Uysal Zıraman D., Doğan Ö.M., Uysal B.Z., Mass transfer enhancement factor for chemical absorption of carbon dioxide into sodium metaborate solution, Korean J. Chem. Eng., 35 (9), 1800-1806, 2018.
  • 33. Haidl J., Rejl F.J., Valenz L., Moucha T., Petrícek R., General mass-transfer model for gas phase in structured packings, Chem. Eng. Res. Des., 126, 45–53, 2017.
  • 34. Rejl F.J., Valenz L., Haidl J., Kordac M., Moucha T., On the modeling of gas-phase mass-transfer in metal sheet structured packings, Chem. Eng. Res. Des., 93, 194-202, 2015.
  • 35. Wang C., Perry M., Rochelle G.T., Seibert A.F., Packing characterization: mass transfer properties, Energy Procedia 23, 23–32, 2012.
  • 36. Tsai R.E., Seibert A.F., Eldridge R.B., Rochelle G.T., Influence of viscosity and surface tension on the effective mass transfer area of structured packing, Energy Procedia 1, 1197-1204, 2009.
  • 37. Whitman W.G., The two-film theory of gas absorption, Chem. Met. Eng., 29:146, 1923.
  • 38. Duss M., Meierhofer H., Nutter D.E., Effective interfacial area and liquid holdup of nutter rings at high liquid loads, Chem. Eng. Technol. 24 (7), 716–723, 2001.
  • 39. Pinsent B., Pearson L., Roughton F.,The kinetics of combination of carbon dioxide with hydroxide ions, Trans.Faraday Soc., 52: 1512–1520, 1956.
  • 40. Aroonwilas A., Tontiwachwuthikul P., Mass transfer coefficients and correlation for CO2 absorption into 2-Amino-2-methyl-1-propanol (AMP) using structured packing. Ind. Eng. Chem., Res, 37, 569-575, 1998.
  • 41. Di X., Chen S., Wang W., Huang Y., Experimental investigation of mass transfer performance in laboratory and pilot-scale structured-packing columns under roll motion, Chem. Eng. Sci., 177, 27–38, 2018.
  • 42. Uysal D., Kalsiyum asetat çözeltisi ile karbon dioksitin absorpsiyonu, Doktora Tezi, Gazi Üniversitesi, Kimya Mühendisliği Anabilim Dalı, 2016.
  • 43. Danckwerts P.V., Gas‐liquid reactions, McGraw‐Hill Book Co., New York, 1970.
  • 44. Kierzkowska-Pawlak H., Determination of kinetics in gas-liquid reaction systems an overview, Ecol Chem Eng. S. 19(2):175-196, 2012.
  • 45. Last W., Stichlmair J., Determination of mass transfer parameters by means of chemical absorption, Chem. Eng. Technol. 25: 4, 2002.
  • 46. Tsai R.E., Seibert A.F., Eldridge R.B., Rochelle G.T., A dimensionless model for predicting the mass-transfer area of structured packing, AIChE J., 57, 1173-1184, 2011.
  • 47. Kumar P.S., Hogendoorn J.A., Feron P.H.M., Versteeg G.F., Approximate solution to predict the enhancement factor for the reactive absorption of a gas in a liquid flowing through a microporous membrane hollow fiber, J. Membr. Sci., 213, 231–245, 2003.
  • 48. De Brito H., von Stockar U., Bangerter M., Bomio P., Laso M., Effective mass-transfer area in a pilot plant column equipped with structured packings and with ceramic rings, Ind. Eng. Chem. Res, 33, 647-656, 1994.
  • 49. Chen E.,Carbon dioxide absorption into piperazine promoted potassium carbonate using structured packing, Doctor of Philosophy Thesis, Faculty of the Graduate School of The University of Texas, Austin, 2007.
  • 50. Fourati M., Roig V., Raynal L., Experimental study of liquid spreading in structured packings, Chem. Eng. Sci., 80, 1–15, 2012.
  • 51. Iliuta I., Petre C.F., Larachi F., Hydrodynamic continuum model for two-phase flow structured-packing-containing columns, Chem. Eng. Sci., 59, 879–888, 2004.
  • 52. Rocha J.A., Bravo J.L., Fair J.R., Distillation columns containing structured packings: a comprehensive model for their performance. 1. hydraulic models, Ind. Eng. Chem. Res., 32, 641-651, 1993.
  • 53. Rejl F.J., Haidl J., Valenz L., Marchi A., Moucha T., Petrícek R., Brunazzi E., Liquid-phase mass-transfer coefficients of mellapak structured packings under desorption of oxygen from primary alcohols, Chem. Eng. Res. Des., 127, 1–9, 2017.
  • 54. Dong B., Yuan X.G., Yu K.T., Determination of liquid mass-transfer coefficients for the absorption of CO2 in alkaline aqueous solutions in structured packing using numerical simulation, Chem. Eng. Res. Des., 124, 238–251, 2017.
  • 55. Olujić Z., Rietfort T., Jansen H., Kaibel B., Zich E., Frey G., Experimental characterization and modeling of high performance structured packings, Ind. Eng. Chem. Res., 51, 4414−4423, 2012.
  • 56. Wang C., Song D., Seibert F.A., Rochelle G.T., Dimensionless models for predicting the effective area,liquid-film, and gas-film mass-transfer coefficients of packing, Ind. Eng. Chem. Res. 55, 5373–5384, 2016.
  • 57. Rocha J.A., Bravo J.L., Fair J.R., Distillation columns containing structured packings: a comprehensive model for their performance. 2. mass-transfer model, Ind. Eng.Chem. Res. 35, 1660–1667, 1996.
  • 58. Hanley B., Chen C.-C., New mass-transfer correlations for packed towers. AIChE J. 58, 132–152, 2012.
  • 59. Johnstone H.F., Pigford R.L., Distillation in a wetted wall column. Trans. AIChE 38, 25–51, 1942.
  • 60. Billet R., Schultes M., Prediction of mass transfer columns with dumpled and arranged packings updated summary of the calculation method of billet and schultes, Chem. Eng. Res.Des. 77, 498–504, 1999.
  • 61. Nieuwoudt I., Crause J.C., Mass transfer in a short wetted-wall column 2. binary systems, Ind. Eng. Chem. Res.38, 4933–4937, 1999.
  • 62. Olujic Z., Behrens M., Colli L., Paglianti A., Predicting the efficiency of corrugated sheet structured packings with large specific surface area, Chem. Biochem. Eng. Q. 18, 89–96, 2004.
  • 63. Barrett P.V.L., Gas absorption on a sieve plate, Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 1966.
  • 64. Versteeg G.F., van Swaaij W.P.M., Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions, J. Chem. Eng. Data, 33, 29-34, 1988.
  • 65. Zeebe R.E., On the molecular diffusion coefficients of dissolved CO2, HCO3- and CO32- and their dependence on isotopic mass, Geochim. Cosmochim. Acta, 75, 2483–2498, 2011.
  • 66. Krauß M., Rzehak R., Reactive absorption of CO2 in NaOH: an euler-euler simulation study, Chem. Eng. Sci., 181, 199–214, 2018.
  • 67. Kucka L., Kenig E.Y., Gorak A., Kinetics of the gas-liquid reaction between carbon dioxide and hydroxide ions, Ind. Eng. Chem. Res, 41, 5952-5957, 2002.
  • 68. Nijsing R.A.T.O., Hendriksz R.H.; Kramers H. Absorption of CO2 in jets and falling films of electrolyte solutions with and without chemical reaction, Chem. Eng. Sci. 10, 88, 1959.
  • 69. Astarita G., Savage D. W., Bisio A. Gas Treating with Chemical Solvents, John Wiley & Sons, New York, 1983.
  • 70. Licht S.E., Weiland R.H., Density and physical solubility of CO2 in partially loaded solutions of MEA, DEA and MDEA, Presented at the AICHE National Meeting, Paper No. 57f, Houston, 1989.
  • 71. Dang H., Rochelle G.T., Carbon dioxide absorption rate and solubility in MEA/PZ/H2O, Sep. Sci. Technol., 38:2, 337, 2003.
  • 72. van Krevelen D. W. Hoftijzer P.J., Chimie et industrie: numero special edu XXIe. Congres International de Chimie Industrielle, Bruxxels, 1948. (cited by Danckwerts, 1970).
Year 2020, Volume: 35 Issue: 3, 1333 - 1352, 07.04.2020
https://doi.org/10.17341/gazimmfd.640984

Abstract

References

  • 1. IEA (International Energy Agency), Global energy and CO2 status report – 2017, March 2018.
  • 2. Intergovernmental Panel on Climate Change (IPCC) Special Report of Global warming of 1.5°C, 2018.
  • 3. PBL Netherlands Environmental Assessment Agency, Trends in global CO2 and total greenhouse gas emissions-2017 report, The Hague, PBL publication number: 2674, 2017.
  • 4. Kohl A. L., Nielsen R. Gas Purification, 5th ed., Vol. viii.Gulf Publishing, Houston, TX, 1997.
  • 5. Anwar M.N., Fayyaz A., Sohail N.F., Khokhar M.F., Baqar M., Khan W.D., Rasool K., Rehan M., Nizami A.S., CO2 capture and storage: a way forward for sustainable environment, J. Environ. Manage. 226,131–144, 2018.
  • 6. Koytsoumpa E.I., Bergins C., Kakaras E., The CO2 economy: review of CO2 capture and reuse technologies, J. Supercrit. Fluids, 132, 3–16, 2018.
  • 7. Cuellar-Franca R.M., Azapagic A., Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts, J. CO2 Util. 9, 82–102, 2015.
  • 8. Yang W., Yu X., Mi J., Wang W., Chen J., Mass transfer performance of structured packings in a CO2 absorption tower, Chin. J. Chem. Eng., 23, 42–49, 2015.
  • 9. Raza A., Gholami R., Rezaee R., Rasouli V., Rabiei M., Petroleum, 2018. https://doi.org/10.1016/j.petlm.2018.12.007.
  • 10. Leung D.Y., Caramanna G., Maroto-Valer M.M., An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy. Rev., 39, 426–443, 2014.
  • 11. Aroonwilas A., Tontiwachwuthikul P., Mechanistic model for prediction of structured packing mass transfer performance in CO2 absorption with chemical reactions, Chem. Eng. Sci, 3651-3663, 2000.
  • 12. Alix P., Raynal L., Abbe F., Meyer M., Prevost M., Rouzineau D., Mass transfer and hydrodynamic characteristics of new carbon carbon packing: application to CO2 post-combustion capture, Chem. Eng. Res. Des., 89, 1658–1668, 2011.
  • 13. Brunazzi E., Paglianti A., Liquid-film mass-transfer coefficient in a column equipped with structured packings, Ind. Eng. Chem. Res., 36, 3792-3799, 1997.
  • 14. Laso M., Brito H.M., Bomio P., von Stockar U., Liquid-side mass transfer characteristics of a structured packing, Chem. Eng. J., 58, 251-258, 1995.
  • 15. Olujić Z., Kamerbeek A.B., de Graauw j., A corrugation geometry based model for efficiency of structured distillation packing, Chem. Eng. Process., 38, 683–695, 1999.
  • 16. Kunze A.K., Lutze P., Kopatschek M., Mackowiak J.F., Mackowiak J., Grünewald M., Górak A., Mass transfer measurements in absorption and desorption: determination of mass transfer parameters, Chem. Eng. Res. Des., 104: 440–452, 2015.
  • 17. Valenz L., Rejl F.J. Síma J. Linek V., Absorption mass-transfer characteristics of mellapak packings series, Ind. Eng. Chem. Res., 50, 12134–12142, 2011.
  • 18. Aroonwilas A., Tontiwachwuthikul P., Chakma A., Effects of operating and design parameters on CO2 absorption in columns with structured packings, Sep. Purif. Technol. 24, 403–411, 2001.
  • 19. Gorak A., Olujić Z., Distillation: Equipment and Processes. Chapter-4: Structured Packings, Academic Press is an imprint of Elsevier, 2014.
  • 20. Rousseau R.W., Handbook of Separation Process Technology, 1st Edition, John Wiley & Sons, Inc., USA, 1987.
  • 21. Perry R.H., Green D. W., Perry's Chemical Engineers' Handbook, 7th Edition, Section 14, McGraw-Hill Professional, 1997.
  • 22. Smith R.,Chemical Process Design and Integration, 2nd Edition, Part 8, Wiley, 2016.
  • 23. Olujić Z.,Seibert A.F., Fair J.R., Influence of corrugation geometry on the performance of structured packings: an experimental study, Chem. Eng. Process. Process Intensif., 39, 335-342, 2000.
  • 24. Wang C., Perry M., Seibert F., Rochelle G.T., Characterization of novel structured packings for CO2 capture, Energy Procedia, 37, 2145–2153, 2013.
  • 25. Uysal B.Z., Kütle Transferi Uygulama ve Esasları. 3. Baskı, Gazi Kitabevi, Ankara, 2019.
  • 26. Kister H.Z., Distillation Design, McGraw-Hill, New York, 1992.
  • 27. Zakeri A., Einbu A., Svendsen H. F., Experimental investigation of pressure drop in structured packings, Chem. Eng. Sci., 73, 285–298, 2012.
  • 28. Mackowiak J.,Fluid dynamics of packed columns, principles of the fluid dynamic design of columns for gas/liquid and liquid/liquid systems, Springer-Verlag, Berlin Heidelberg, 2010.
  • 29. Olujić Z., Jansen H., Kaibel B., Rietfort T., Zich E., Stretching the capacity of structured packings, Ind. Eng. Chem. Res. 40, 6172–6180, 2001.
  • 30. Minnie U.L., Effect of liquid and gas physical properties on the hydrodynamics of packed columns, Master of Thesis, Stellenbosch University, Faculty of Engineering, Chemical Engineering Department, 2017.
  • 31. Hoffmann A., Mackowiak J.F., Gorak A., Haase M., Loning J.M., Runiwski T., Hallenberger K., Standardization of mass transfer measurements a basis for the description of absorption processes, Chem. Eng. Res. 85, 40, 2007.
  • 32. Uysal Zıraman D., Doğan Ö.M., Uysal B.Z., Mass transfer enhancement factor for chemical absorption of carbon dioxide into sodium metaborate solution, Korean J. Chem. Eng., 35 (9), 1800-1806, 2018.
  • 33. Haidl J., Rejl F.J., Valenz L., Moucha T., Petrícek R., General mass-transfer model for gas phase in structured packings, Chem. Eng. Res. Des., 126, 45–53, 2017.
  • 34. Rejl F.J., Valenz L., Haidl J., Kordac M., Moucha T., On the modeling of gas-phase mass-transfer in metal sheet structured packings, Chem. Eng. Res. Des., 93, 194-202, 2015.
  • 35. Wang C., Perry M., Rochelle G.T., Seibert A.F., Packing characterization: mass transfer properties, Energy Procedia 23, 23–32, 2012.
  • 36. Tsai R.E., Seibert A.F., Eldridge R.B., Rochelle G.T., Influence of viscosity and surface tension on the effective mass transfer area of structured packing, Energy Procedia 1, 1197-1204, 2009.
  • 37. Whitman W.G., The two-film theory of gas absorption, Chem. Met. Eng., 29:146, 1923.
  • 38. Duss M., Meierhofer H., Nutter D.E., Effective interfacial area and liquid holdup of nutter rings at high liquid loads, Chem. Eng. Technol. 24 (7), 716–723, 2001.
  • 39. Pinsent B., Pearson L., Roughton F.,The kinetics of combination of carbon dioxide with hydroxide ions, Trans.Faraday Soc., 52: 1512–1520, 1956.
  • 40. Aroonwilas A., Tontiwachwuthikul P., Mass transfer coefficients and correlation for CO2 absorption into 2-Amino-2-methyl-1-propanol (AMP) using structured packing. Ind. Eng. Chem., Res, 37, 569-575, 1998.
  • 41. Di X., Chen S., Wang W., Huang Y., Experimental investigation of mass transfer performance in laboratory and pilot-scale structured-packing columns under roll motion, Chem. Eng. Sci., 177, 27–38, 2018.
  • 42. Uysal D., Kalsiyum asetat çözeltisi ile karbon dioksitin absorpsiyonu, Doktora Tezi, Gazi Üniversitesi, Kimya Mühendisliği Anabilim Dalı, 2016.
  • 43. Danckwerts P.V., Gas‐liquid reactions, McGraw‐Hill Book Co., New York, 1970.
  • 44. Kierzkowska-Pawlak H., Determination of kinetics in gas-liquid reaction systems an overview, Ecol Chem Eng. S. 19(2):175-196, 2012.
  • 45. Last W., Stichlmair J., Determination of mass transfer parameters by means of chemical absorption, Chem. Eng. Technol. 25: 4, 2002.
  • 46. Tsai R.E., Seibert A.F., Eldridge R.B., Rochelle G.T., A dimensionless model for predicting the mass-transfer area of structured packing, AIChE J., 57, 1173-1184, 2011.
  • 47. Kumar P.S., Hogendoorn J.A., Feron P.H.M., Versteeg G.F., Approximate solution to predict the enhancement factor for the reactive absorption of a gas in a liquid flowing through a microporous membrane hollow fiber, J. Membr. Sci., 213, 231–245, 2003.
  • 48. De Brito H., von Stockar U., Bangerter M., Bomio P., Laso M., Effective mass-transfer area in a pilot plant column equipped with structured packings and with ceramic rings, Ind. Eng. Chem. Res, 33, 647-656, 1994.
  • 49. Chen E.,Carbon dioxide absorption into piperazine promoted potassium carbonate using structured packing, Doctor of Philosophy Thesis, Faculty of the Graduate School of The University of Texas, Austin, 2007.
  • 50. Fourati M., Roig V., Raynal L., Experimental study of liquid spreading in structured packings, Chem. Eng. Sci., 80, 1–15, 2012.
  • 51. Iliuta I., Petre C.F., Larachi F., Hydrodynamic continuum model for two-phase flow structured-packing-containing columns, Chem. Eng. Sci., 59, 879–888, 2004.
  • 52. Rocha J.A., Bravo J.L., Fair J.R., Distillation columns containing structured packings: a comprehensive model for their performance. 1. hydraulic models, Ind. Eng. Chem. Res., 32, 641-651, 1993.
  • 53. Rejl F.J., Haidl J., Valenz L., Marchi A., Moucha T., Petrícek R., Brunazzi E., Liquid-phase mass-transfer coefficients of mellapak structured packings under desorption of oxygen from primary alcohols, Chem. Eng. Res. Des., 127, 1–9, 2017.
  • 54. Dong B., Yuan X.G., Yu K.T., Determination of liquid mass-transfer coefficients for the absorption of CO2 in alkaline aqueous solutions in structured packing using numerical simulation, Chem. Eng. Res. Des., 124, 238–251, 2017.
  • 55. Olujić Z., Rietfort T., Jansen H., Kaibel B., Zich E., Frey G., Experimental characterization and modeling of high performance structured packings, Ind. Eng. Chem. Res., 51, 4414−4423, 2012.
  • 56. Wang C., Song D., Seibert F.A., Rochelle G.T., Dimensionless models for predicting the effective area,liquid-film, and gas-film mass-transfer coefficients of packing, Ind. Eng. Chem. Res. 55, 5373–5384, 2016.
  • 57. Rocha J.A., Bravo J.L., Fair J.R., Distillation columns containing structured packings: a comprehensive model for their performance. 2. mass-transfer model, Ind. Eng.Chem. Res. 35, 1660–1667, 1996.
  • 58. Hanley B., Chen C.-C., New mass-transfer correlations for packed towers. AIChE J. 58, 132–152, 2012.
  • 59. Johnstone H.F., Pigford R.L., Distillation in a wetted wall column. Trans. AIChE 38, 25–51, 1942.
  • 60. Billet R., Schultes M., Prediction of mass transfer columns with dumpled and arranged packings updated summary of the calculation method of billet and schultes, Chem. Eng. Res.Des. 77, 498–504, 1999.
  • 61. Nieuwoudt I., Crause J.C., Mass transfer in a short wetted-wall column 2. binary systems, Ind. Eng. Chem. Res.38, 4933–4937, 1999.
  • 62. Olujic Z., Behrens M., Colli L., Paglianti A., Predicting the efficiency of corrugated sheet structured packings with large specific surface area, Chem. Biochem. Eng. Q. 18, 89–96, 2004.
  • 63. Barrett P.V.L., Gas absorption on a sieve plate, Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 1966.
  • 64. Versteeg G.F., van Swaaij W.P.M., Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions, J. Chem. Eng. Data, 33, 29-34, 1988.
  • 65. Zeebe R.E., On the molecular diffusion coefficients of dissolved CO2, HCO3- and CO32- and their dependence on isotopic mass, Geochim. Cosmochim. Acta, 75, 2483–2498, 2011.
  • 66. Krauß M., Rzehak R., Reactive absorption of CO2 in NaOH: an euler-euler simulation study, Chem. Eng. Sci., 181, 199–214, 2018.
  • 67. Kucka L., Kenig E.Y., Gorak A., Kinetics of the gas-liquid reaction between carbon dioxide and hydroxide ions, Ind. Eng. Chem. Res, 41, 5952-5957, 2002.
  • 68. Nijsing R.A.T.O., Hendriksz R.H.; Kramers H. Absorption of CO2 in jets and falling films of electrolyte solutions with and without chemical reaction, Chem. Eng. Sci. 10, 88, 1959.
  • 69. Astarita G., Savage D. W., Bisio A. Gas Treating with Chemical Solvents, John Wiley & Sons, New York, 1983.
  • 70. Licht S.E., Weiland R.H., Density and physical solubility of CO2 in partially loaded solutions of MEA, DEA and MDEA, Presented at the AICHE National Meeting, Paper No. 57f, Houston, 1989.
  • 71. Dang H., Rochelle G.T., Carbon dioxide absorption rate and solubility in MEA/PZ/H2O, Sep. Sci. Technol., 38:2, 337, 2003.
  • 72. van Krevelen D. W. Hoftijzer P.J., Chimie et industrie: numero special edu XXIe. Congres International de Chimie Industrielle, Bruxxels, 1948. (cited by Danckwerts, 1970).
There are 72 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Gizem Genç Çelikçi 0000-0002-5483-9720

Duygu Uysal Zıraman 0000-0002-8963-6026

Bekir Uysal 0000-0002-9475-9194

Publication Date April 7, 2020
Submission Date October 31, 2019
Acceptance Date January 31, 2020
Published in Issue Year 2020 Volume: 35 Issue: 3

Cite

APA Genç Çelikçi, G., Uysal Zıraman, D., & Uysal, B. (2020). Yapılı dolgulu kolonda sıvı ve gaz fazı kütle transfer katsayıları ve ara yüzey alanı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1333-1352. https://doi.org/10.17341/gazimmfd.640984
AMA Genç Çelikçi G, Uysal Zıraman D, Uysal B. Yapılı dolgulu kolonda sıvı ve gaz fazı kütle transfer katsayıları ve ara yüzey alanı. GUMMFD. April 2020;35(3):1333-1352. doi:10.17341/gazimmfd.640984
Chicago Genç Çelikçi, Gizem, Duygu Uysal Zıraman, and Bekir Uysal. “Yapılı Dolgulu Kolonda sıvı Ve Gaz Fazı kütle Transfer katsayıları Ve Ara yüzey Alanı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 3 (April 2020): 1333-52. https://doi.org/10.17341/gazimmfd.640984.
EndNote Genç Çelikçi G, Uysal Zıraman D, Uysal B (April 1, 2020) Yapılı dolgulu kolonda sıvı ve gaz fazı kütle transfer katsayıları ve ara yüzey alanı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 3 1333–1352.
IEEE G. Genç Çelikçi, D. Uysal Zıraman, and B. Uysal, “Yapılı dolgulu kolonda sıvı ve gaz fazı kütle transfer katsayıları ve ara yüzey alanı”, GUMMFD, vol. 35, no. 3, pp. 1333–1352, 2020, doi: 10.17341/gazimmfd.640984.
ISNAD Genç Çelikçi, Gizem et al. “Yapılı Dolgulu Kolonda sıvı Ve Gaz Fazı kütle Transfer katsayıları Ve Ara yüzey Alanı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/3 (April 2020), 1333-1352. https://doi.org/10.17341/gazimmfd.640984.
JAMA Genç Çelikçi G, Uysal Zıraman D, Uysal B. Yapılı dolgulu kolonda sıvı ve gaz fazı kütle transfer katsayıları ve ara yüzey alanı. GUMMFD. 2020;35:1333–1352.
MLA Genç Çelikçi, Gizem et al. “Yapılı Dolgulu Kolonda sıvı Ve Gaz Fazı kütle Transfer katsayıları Ve Ara yüzey Alanı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 3, 2020, pp. 1333-52, doi:10.17341/gazimmfd.640984.
Vancouver Genç Çelikçi G, Uysal Zıraman D, Uysal B. Yapılı dolgulu kolonda sıvı ve gaz fazı kütle transfer katsayıları ve ara yüzey alanı. GUMMFD. 2020;35(3):1333-52.