BibTex RIS Kaynak Göster

YANAL İZOTROPİK FİBER KOMPOZİT ÇUBUKLARDA BURULMA YÜKLEMELERİ İÇİN YENİ FORMDA KAYMA MODÜLÜ TANIMLAMALARI

Yıl 2004, Cilt: 19 Sayı: 1, 0 - , 10.04.2013

Öz

Bu çalışma, ilk olarak homojen olmayan fiber kompozit malzemeler üzerinde uygulanmakta olan burulma yüklemeleri altındaki çubuklara ait kayma modülü elastisite modelleri ve modellerin aralarındaki farklılıkların araştırılmasını içermektedir. İkinci olarak, kayma modülü tanımlamasının yanal izotrop malzemeler için yeni formda oluşturulması ele alınmıştır. Literatürde, değişik kesitlere sahip çubuklar için kısaca verilen iki boyutlu  kayma modülü formülasyonları, yeniden oluşturulmuştur. Yeni bir form olarak, yanal izotropiye sahip fiber kompozit malzemeler için onbir bağımsız elastik sabite sahip kayma modülünün en genel tanımlaması yapılmıştır. Tanımlamaları yapılan bu yeni modelde kayma modülü, denklemler sistemi formunda oluşturulmuştur.

Kaynakça

  • Stokes, V.K., “Design with Nonhomogeneous Materials-Part II: Torsion of Thin-Walled Prismatic Bars”, ASME Journal of Vibration, Acoustics, Stress and Reliability in Design,Vol.109., 87-91, 1987.
  • Birlik, G., Solid Mechanics Courses I-II, Undergraduate Lecture Notes, Eng. Sci. Dept., METU, Ankara, 1984.
  • Yaraşık, C.A., Torsional Elasticity Formulations for Deformation of Nonhomogeneous Bars and Literature Survey on Composite Type Beams and Plates, Graduation Project, G.U. Mech. Eng. Dept., Ankara, 2001.
  • Stokes,V.K., “Design with Nonhomogeneous Materials-Part I: Pure Bending of Prismatic Bars”, ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol.108., 82-86, 1987.
  • Timeshenko, S.P., Goodier, J.N., Theory of Elasticity, 3rd. Ed., McGraw-Hill, New York, 291-297, 1970.
  • Oden, J.T., and Ripperger, E.A., Mechanics of Elastic Structures, 2nd ed., McGraw-Hill, New York, 1980.
  • Ugural, A.C., Fenster, S.K., Advanced Strength and Applied Elasticity, 3rd.Ed., Prentice Hall., PTR, New Jersey, 1999.
  • Coulomb, Histoire de l’Academie’, 1784, 229-269, Paris, 1787.
  • Navier, Ressume des Leçons sur I’Application de la Mécanique, 3rd.Ed., Paris, Edited by Saint-Venant, 1864.
  • Ergüven, M.E., “Torsion of a Nonhomogeneous transversely isotropic half-space”, Lett. App. Engng. Sci., 20(5), 675-679, 1982.
  • Konaklı, S., Burulma Yüklemesi Altındaki Yanal-İzotrop Malzemeden Yapılmış Dairesel Kesitli Çubuklarda Kayma Modülünün Matematiksel Modellemesi, Gazi Üniv. Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara, Temmuz, 2003.
  • Granino, A.,K., Theresa, M.K., Mathematical Handbook for Scientists and Engineers, 2nd Ed., Mc-Graw Hill, New York, 236-237, 1968.
  • Hildebrand, F.B., Advanced Calculus for Applications, 2nd Ed, Prentice-Hall, New Jersey, 1976.
  • Spiegel, M.R., Matematik Formülleri Tabloları El Kitabı, Bilim Teknik Yayınevi, Eskişehir, 1968.
  • Gibson, R.F., Principles of Composite Material Mechanics, McGraw-Hill Inc., Singapore, 1994.
  • Johnson, A.F., “Bending and Torsion of Anisotropic Beams”, Int.J.Solids Structures, Vol.9, 527-551, 1973.
  • Ting, T.C.T., “Pressuring Shearing Torsion and Extension of a Circular Tube or Bar of Cylindrically Anisotropic Material”, Proc. R. Soc. Lond. A, Vol.452, 2397-2421, 1996.
  • Martynovich, B.T., Martynovich, T.L., “Use of Integral Equations in the Solution of Problems of Torsion of Rectilinear-Anisotropic Rods”, Izv. AN SSSR. Mekhanika Tverdogo Tela, Vol.19, No.2, 112-118, Allerton Press, 1984.
  • Kardomateas, G.,A., “Theory of Elasticity of Filament Wound Anisotropic Ellipsoids with Specialization to Torsion of Orthotropic Bars”, Journal of Applied Mechanics, Vol.55, 837-844, 1988.
  • Zidi, M., “Finite Torsion and Shearing of a Compressible and Anisotropic Tube”, International Journal of Non-Linear Mechanics, Vol.35,1115-1126, 2000.
  • Senitskii, Y.E., “Dynamic Torsion of a Finite Anisotropic Cylindrical Layer”, Kuibyshev Civil Engineerin Institute, Prikladnay Mekhanika, Vol.21, No.6, 11-17, 1985.
  • Reissner, E., “On a One-Dimensional Theory of Finite Torsion and Flexure of Anisotropic Elastic Plates”, Journal of Applied Mechanics, Vol.48,601-605, 1981.
  • Li, D.B., Chui, Y.H., Smith, I., “A Vibration-Based Method for Determining St.Venant Torsional and Warping Stiffnesses of Members with Open Cross-Sections”, American Society for Testing and Materials”, 141-144, 1995.
Yıl 2004, Cilt: 19 Sayı: 1, 0 - , 10.04.2013

Öz

Kaynakça

  • Stokes, V.K., “Design with Nonhomogeneous Materials-Part II: Torsion of Thin-Walled Prismatic Bars”, ASME Journal of Vibration, Acoustics, Stress and Reliability in Design,Vol.109., 87-91, 1987.
  • Birlik, G., Solid Mechanics Courses I-II, Undergraduate Lecture Notes, Eng. Sci. Dept., METU, Ankara, 1984.
  • Yaraşık, C.A., Torsional Elasticity Formulations for Deformation of Nonhomogeneous Bars and Literature Survey on Composite Type Beams and Plates, Graduation Project, G.U. Mech. Eng. Dept., Ankara, 2001.
  • Stokes,V.K., “Design with Nonhomogeneous Materials-Part I: Pure Bending of Prismatic Bars”, ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol.108., 82-86, 1987.
  • Timeshenko, S.P., Goodier, J.N., Theory of Elasticity, 3rd. Ed., McGraw-Hill, New York, 291-297, 1970.
  • Oden, J.T., and Ripperger, E.A., Mechanics of Elastic Structures, 2nd ed., McGraw-Hill, New York, 1980.
  • Ugural, A.C., Fenster, S.K., Advanced Strength and Applied Elasticity, 3rd.Ed., Prentice Hall., PTR, New Jersey, 1999.
  • Coulomb, Histoire de l’Academie’, 1784, 229-269, Paris, 1787.
  • Navier, Ressume des Leçons sur I’Application de la Mécanique, 3rd.Ed., Paris, Edited by Saint-Venant, 1864.
  • Ergüven, M.E., “Torsion of a Nonhomogeneous transversely isotropic half-space”, Lett. App. Engng. Sci., 20(5), 675-679, 1982.
  • Konaklı, S., Burulma Yüklemesi Altındaki Yanal-İzotrop Malzemeden Yapılmış Dairesel Kesitli Çubuklarda Kayma Modülünün Matematiksel Modellemesi, Gazi Üniv. Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara, Temmuz, 2003.
  • Granino, A.,K., Theresa, M.K., Mathematical Handbook for Scientists and Engineers, 2nd Ed., Mc-Graw Hill, New York, 236-237, 1968.
  • Hildebrand, F.B., Advanced Calculus for Applications, 2nd Ed, Prentice-Hall, New Jersey, 1976.
  • Spiegel, M.R., Matematik Formülleri Tabloları El Kitabı, Bilim Teknik Yayınevi, Eskişehir, 1968.
  • Gibson, R.F., Principles of Composite Material Mechanics, McGraw-Hill Inc., Singapore, 1994.
  • Johnson, A.F., “Bending and Torsion of Anisotropic Beams”, Int.J.Solids Structures, Vol.9, 527-551, 1973.
  • Ting, T.C.T., “Pressuring Shearing Torsion and Extension of a Circular Tube or Bar of Cylindrically Anisotropic Material”, Proc. R. Soc. Lond. A, Vol.452, 2397-2421, 1996.
  • Martynovich, B.T., Martynovich, T.L., “Use of Integral Equations in the Solution of Problems of Torsion of Rectilinear-Anisotropic Rods”, Izv. AN SSSR. Mekhanika Tverdogo Tela, Vol.19, No.2, 112-118, Allerton Press, 1984.
  • Kardomateas, G.,A., “Theory of Elasticity of Filament Wound Anisotropic Ellipsoids with Specialization to Torsion of Orthotropic Bars”, Journal of Applied Mechanics, Vol.55, 837-844, 1988.
  • Zidi, M., “Finite Torsion and Shearing of a Compressible and Anisotropic Tube”, International Journal of Non-Linear Mechanics, Vol.35,1115-1126, 2000.
  • Senitskii, Y.E., “Dynamic Torsion of a Finite Anisotropic Cylindrical Layer”, Kuibyshev Civil Engineerin Institute, Prikladnay Mekhanika, Vol.21, No.6, 11-17, 1985.
  • Reissner, E., “On a One-Dimensional Theory of Finite Torsion and Flexure of Anisotropic Elastic Plates”, Journal of Applied Mechanics, Vol.48,601-605, 1981.
  • Li, D.B., Chui, Y.H., Smith, I., “A Vibration-Based Method for Determining St.Venant Torsional and Warping Stiffnesses of Members with Open Cross-Sections”, American Society for Testing and Materials”, 141-144, 1995.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ezgi Günay Bu kişi benim

Sedef Konaklı Bu kişi benim

Yayımlanma Tarihi 10 Nisan 2013
Gönderilme Tarihi 10 Nisan 2013
Yayımlandığı Sayı Yıl 2004 Cilt: 19 Sayı: 1

Kaynak Göster

APA Günay, E., & Konaklı, S. (2013). YANAL İZOTROPİK FİBER KOMPOZİT ÇUBUKLARDA BURULMA YÜKLEMELERİ İÇİN YENİ FORMDA KAYMA MODÜLÜ TANIMLAMALARI. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 19(1).
AMA Günay E, Konaklı S. YANAL İZOTROPİK FİBER KOMPOZİT ÇUBUKLARDA BURULMA YÜKLEMELERİ İÇİN YENİ FORMDA KAYMA MODÜLÜ TANIMLAMALARI. GUMMFD. Mart 2013;19(1).
Chicago Günay, Ezgi, ve Sedef Konaklı. “YANAL İZOTROPİK FİBER KOMPOZİT ÇUBUKLARDA BURULMA YÜKLEMELERİ İÇİN YENİ FORMDA KAYMA MODÜLÜ TANIMLAMALARI”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 19, sy. 1 (Mart 2013).
EndNote Günay E, Konaklı S (01 Mart 2013) YANAL İZOTROPİK FİBER KOMPOZİT ÇUBUKLARDA BURULMA YÜKLEMELERİ İÇİN YENİ FORMDA KAYMA MODÜLÜ TANIMLAMALARI. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 19 1
IEEE E. Günay ve S. Konaklı, “YANAL İZOTROPİK FİBER KOMPOZİT ÇUBUKLARDA BURULMA YÜKLEMELERİ İÇİN YENİ FORMDA KAYMA MODÜLÜ TANIMLAMALARI”, GUMMFD, c. 19, sy. 1, 2013.
ISNAD Günay, Ezgi - Konaklı, Sedef. “YANAL İZOTROPİK FİBER KOMPOZİT ÇUBUKLARDA BURULMA YÜKLEMELERİ İÇİN YENİ FORMDA KAYMA MODÜLÜ TANIMLAMALARI”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 19/1 (Mart 2013).
JAMA Günay E, Konaklı S. YANAL İZOTROPİK FİBER KOMPOZİT ÇUBUKLARDA BURULMA YÜKLEMELERİ İÇİN YENİ FORMDA KAYMA MODÜLÜ TANIMLAMALARI. GUMMFD. 2013;19.
MLA Günay, Ezgi ve Sedef Konaklı. “YANAL İZOTROPİK FİBER KOMPOZİT ÇUBUKLARDA BURULMA YÜKLEMELERİ İÇİN YENİ FORMDA KAYMA MODÜLÜ TANIMLAMALARI”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 19, sy. 1, 2013.
Vancouver Günay E, Konaklı S. YANAL İZOTROPİK FİBER KOMPOZİT ÇUBUKLARDA BURULMA YÜKLEMELERİ İÇİN YENİ FORMDA KAYMA MODÜLÜ TANIMLAMALARI. GUMMFD. 2013;19(1).