Review
BibTex RIS Cite

Gıda ve içecek endüstrisinde membran teknolojileri

Year 2022, Volume: 37 Issue: 3, 1713 - 1734, 28.02.2022
https://doi.org/10.17341/gazimmfd.881087

Abstract

Gıda ve içecek sektöründe “sürdürülebilir üretim” ve “sıfır atık yaklaşımı” için geleneksel ayırma, saflaştırma ve derişiklendirme yöntemlerine alternatif olarak membran süreçlerinin uygulanması oldukça popüler ve gelişmekte olan bir konudur. Gıda ve içecek sektöründe uygulama çeşitliliğine bağlı olarak uygun membran süreçlerinin kullanımının yaygınlaşmasının başlıca sebepleri; (i) geleneksel yöntemlere göre işlem basamaklarını azaltarak süreci kısaltması, (ii) geleneksel yöntemde uygulanan yüksek sıcaklığa bağlı olarak gıda ve içeceklerin içerdikleri besin ve aroma bileşenlerindeki değişikliklerin minimize edilerek son ürün kalitesini arttırması, (iii) yüksek ayırma seçimliliği ve verimi, (iv) gıda içerisinde yer alan yararlı bileşenlerin zarar görmesini engelleyecek optimum koşullarda çalışma imkânı sunarak gıda güvenliğini sağlayan daha sağlıklı ve çevreci bir sistem olmasıdır. Basınç destekli mikrofiltrasyon (MF), ultrafiltrasyon (UF), nanofiltrasyon (NF) ve Ters Ozmoz (TO) membran süreçleri, geniş bir parçacık aralığında bileşenlerin etkin biçimde ayrılmasına ve dolayısıyla membran uygulamalarının gıda ve içecek sektöründe geniş bir uygulama alanı bulmasına imkan tanımaktadır. Ayrıca membran süreçleri geleneksel yöntemlere göre enerji tüketimi açısından daha ekonomiktirler. Bu derleme makalede, gıda ve içecek sektöründe yer alan alkolsüz (süt, meyve suyu, kahve vb.) ve alkollü (şarap ve bira) içeceklerde membran teknolojilerinin geleneksel yöntemlere göre sağladığı avantajlar, membran teknolojilerinin temel ilkeleri, kullanılan membran tipleri ve uygulama alanları ile endüstriyel ölçekte gerçek uygulama örnekleri hakkında detaylı bilgilere ve bu konuda yapılan çalışmalara yer verilmiştir.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

3200785 ve 1180083

Thanks

Bu çalışma Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) Teknoloji ve Yenilik Destek Programları Başkanlığı’nın (TEYDEB) 3200785 ve 1180083 numaralı projeleri ile desteklenmiştir. Yazarlar, desteklerinden dolayı TÜBİTAK'a teşekkürlerini sunarlar.

References

  • Conidi C., Castro-Muñoz R., Cassano A., Nanofiltration in beverage industry, In Nanotechnology in the Beverage Industry, Elsevier, 525–48, 2020.
  • Berryman P., Advances in Food and Beverage Labelling: Information and Regulations, Elsevier Inc.2014.
  • Jain A., De S., Processing of Beverages by Membranes. In: Processing and Sustainability of Beverages, Elsevier, 517–60, 2019.
  • Shachman M., The Soft Drinks Companion: A Technical Handbook for the Beverage Industry (1st ed.)., CRC Press, 2004.
  • Buglass A.J., Handbook of Alcoholic Beverages: Technical, Analytical and Nutritional Aspects, John Wiley & Sons, Ltd, Chichester, UK, 1–2, 2011.
  • Walker G.M., Walker R.S.K., Enhancing Yeast Alcoholic Fermentations, Advances in Applied Microbiology, 105 87–129, 2018.
  • Fane, A. T., Wang, R., & Jia, Y., Membrane technology: past, present and future. In Membrane and Desalination Technologies, 1-45, Humana Press, Totowa, NJ, 2011.
  • Baker R.W., Membrane Technology and Applications, John Wiley & Sons, Ltd, Chichester, UK, 2004.
  • Purkait M.K., Mohanty K. (Eds.), Membrane Technologies and Applications (1st ed.), CRC Press, 2012.
  • T.C. Çevre ve Şehircilik Bakanlığı Su/Atıksu Arıtılması ve Geri Kazanılmasında Membran teknolojileri ve Uygulamaları Cilt 1: Membran Teknolojileri ve Su Arıtma, İsmail Koyuncu, Yıldızlar Ofset Mat. Yay. Rek. İç Dış Tic. Ltd. Şti., Ankara, Türkiye, 2018.
  • Kumar P., Sharma N., Ranjan R., Kumar S., Bhat Z.F., Jeong D.K., Perspective of membrane technology in dairy industry: A review, Asian-Australasian Journal of Animal Sciences, 26 (9), 1347–58, 2013.
  • Tabani H., Nojavan S., Alexovič M., Sabo J., Recent developments in green membrane-based extraction techniques for pharmaceutical and biomedical analysis, Journal of Pharmaceutical and Biomedical Analysis, Elsevier B.V., 160 244–67, 2018.
  • Ergün A., LBL İnce Film Membranların Ters Osmoz Performanslarının İncelenmesi, Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2017.
  • Castro-Munoz, R., Boczkaj, G., Gontarek, E., Cassano, A., Membrane technologies assisting plant-based and agro-food by-products processing: a comprehensive review, Trends in Food Science & Technology, 95, 219-232, 2020.
  • Peinemann K.V., Nunes S.P., Giorno L., Membrane Technology, Vol. 3, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 3, 2010.
  • Peyravi M., Jahanshahi M., Banafti S., Application of membrane technology in beverage production and safety, In Safety Issues in Beverage Production: Volume 18: The Science of Beverages, Elsevier, 271–308, 2019.
  • Abdel-Fatah, M.A., Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Engineering Journal, 9(4), 3077-3092, 2018.
  • Mohammad, A.W., Teow, Y.H., Ang, W.L., Chung, Y.T., Oatley-Radcliffe, D.L., Hilal, C., Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226-254, 2015.
  • Technavio. Membrane Market for Food and Beverage Processing Market by Geography and Filtration Process- Forecast and Analysis 2020-2024. https://www.technavio.com/report/membrane-market-for-food-and-beverage-processing-market-industry-analysis. Ekim 2020. Erişim Tarihi Kasım 12, 2020.
  • Daufin G., Escudier J.P., Carrére H., Bérot S., Fillaudeau L., Decloux M., Recent and emerging applications of membrane processes in the food and dairy industry, Food and Bioproducts Processing: Transactions of the Institution of of Chemical Engineers, Part C, 79 (2), 89–102, 2001.
  • Vincze, I., Vatai G., Application of nanofiltration for coffee extract concentration, Desalination, 162(1), 287-294, 2004.
  • Bekassy-Molnar E., Lipnizki F., Vatai, G., Engineering Aspects of Membrane Separation and Application in Food Processing (R. Field, Ed.) (1st ed.). CRC Press, 2016.
  • Cassano A., Drioli E., Integrated Membrane Operations, De Gruyter, Berlin, Boston, 2013.
  • Tsuru, T., Nano/subnano-tuning of porous ceramic membranes for molecular separation, Journal of Sol-Gel Science and Technology, 46(3), 349-361, 2008.
  • Topuz, B., Gas permeation through sol-gel derived alumina and silica based membranes, Doktora Tezi, İzmir Institute of Technology, Institute of Engineering and Sciences, İzmir, 2009.
  • Topuz, B., & Çiftçioğlu, M., Sol–gel derived mesoporous and microporous alumina membranes. Journal of sol-gel science and technology, 56(3), 287-299, 2010.
  • Topuz, B., & Çiftçioğlu, M. Preparation of particulate/polymeric sol–gel derived microporous silica membranes and determination of their gas permeation properties. Journal of Membrane Science, 350(1-2), 42-52, 2010.
  • Topuz, B., & Çiftçioğlu, M., Preparation and characterization of diphasic sol-gel derived unsupported mullite membranes, Journal of sol-gel science and technology, 58(1), 6-11, 2011.
  • Duvarci, Ö. Ç., & Çiftçioğlu, M., Preparation and characterization of nanocrystalline titania powders by sonochemical synthesis, Powder technology, 228, 231-240, 2012.
  • Hanaor, D. A., & Sorrell, C. C., Review of the anatase to rutile phase transformation, Journal of Materials science, 46(4), 855-874, 2011.
  • Hanaor, D., Michelazzi, M., Veronesi, P., Leonelli, C., Romagnoli, M., & Sorrell, C., Anodic aqueous electrophoretic deposition of titanium dioxide using carboxylic acids as dispersing agents, Journal of the European Ceramic Society, 31(6), 1041-1047, 2011.
  • Huang, X., Leal, M., & Li, Q., Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes, Water research, 42(4-5), 1142-1150, 2008.
  • Yan, J., Wu, G., Guan, N., Li, L., Li, Z., & Cao, X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO 2: anatase versus rutile. Physical Chemistry Chemical Physics, 15(26), 10978-10988, 2013.
  • Loeb, S., & Sourirajan, S., Sea water demineralization by means of an osmotic membrane, Saline Water Conversion—II, 117-132, 1962.
  • Ren, J., & Wang, R. Preparation of polymeric membranes, Membrane and Desalination Technologies, Handbook of Environmental Engineering , Cilt 13, Editör: Wang L.K., Chen J.P., Hung YT., Shammas N.K., Humana Press, Totowa, NJ, 47-100, 2011.
  • Abdullah, N., Rahman, M. A., Othman, M. H. D., Jaafar, J., & Ismail, A. F., Membranes and Membrane Processes: Fundamentals. In Current Trends and Future Developments on (Bio-) Membranes, 45-70, Elsevier, 2018.
  • Purkait, M. K., Sinha, M. K., Mondal, P., & Singh, R., Introduction to membranes. In Interface science and technology, Vol. 25, 1-37, Elsevier. (2018).
  • Tewari, P.K., Nanocomposite Membrane Technology: Fundamentals and Applications, CRC Press, Boca Raton, A.B.D., 2015. https://doi.org/10.1201/b19213
  • Escobar-Ferrand, L., Layer by Layer, Nano-particle “Only” Surface Modification of Filtration Membranes, Doctoral Dissertation, Columbia University, 2013.
  • Petersen, R. J., Composite reverse osmosis and nanofiltration membranes, Journal of membrane science, 83(1), 81-150, 1993.
  • Jons, S., Ries, P., & McDonald, C. J., Porous latex composite membranes: fabrication and properties, Journal of membrane science, 155(1), 79-99, 1999.
  • Song, Y., Sun, P., Henry, L. L., & Sun, B., Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process, Journal of membrane science, 251(1-2), 67-79, 2005.
  • Yuan, S., Zhang, G., Zhu, J., Mamrol, N., Liu, S., Mai, Z., Puyvelde, P.V., Van der Bruggen, B., Hydrogel assisted interfacial polymerization for advanced nanofiltration membranes, Journal of Materials Chemistry A, 8(6), 3238-3245, 2020.
  • Gong, Y., Gao, S., Tian, Y., Zhu, Y., Fang, W., Wang, Z., Jin, J., Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination, Journal of Membrane Science, 600, 117874, 2020.
  • Liang, Y., Zhu, Y., Liu, C., Lee, K. R., Hung, W. S., Wang, Z., Li, Y., Elimelech, M., Jin, J., Lin, S., Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation, Nature communications, 11(1), 1-9, 2020.
  • Bruening, M., Controlling the ion-permeability of layered polyelectrolyte films and membranes, In Multilayer thin films, 487-510, Wiley–VCH Weinheim, 2003.
  • Fadhillah, F., Javaid Zaidi, S. M., Khan, Z., Khaled, M., Rahman, F., & Hammond, P., Development of multilayer polyelectrolyte thin‐film membranes fabricated by spin assisted layer‐by‐layer assembly, Journal of applied polymer science, 126(4), 1468-1474, 2012.
  • te Brinke, E., Achterhuis, I., Reurink, D. M., de Grooth, J., & de Vos, W. M., Multiple approaches to the buildup of asymmetric polyelectrolyte multilayer membranes for efficient water purification, ACS Applied Polymer Materials, 2(2), 715-724, 2020.
  • Ergün, A., Tümer, E. H., Cengiz, H. Y., & Deligöz, H., Monitoring the Salt Stability of Layer‐by‐Layer Self‐Assembled Films From Polyelectrolyte Blends by Quartz Crystal Microbalance‐Dissipation and Their Ion Separation Performances, Polymer Engineering & Science, 60(5), 1006-1018, 2020.
  • Arslan, M., Dönmez, G., Ergün, A., Okutan, M., Albayrak Arı, G., & Deligöz, H., Preparation, characterization, and separation performances of novel surface modified LbL composite membranes from polyelectrolyte blends and MWCNT, Polymer Engineering & Science, 60(2), 341-351, 2020.
  • Liu, Y., Wang, R., & Chung, T. S., Chemical cross-linking modification of polyimide membranes for gas separation, Journal of Membrane Science, 189(2), 231-239, 2001.
  • Valamohammadi, E., Behdarvand, F., Tofighy, M. A., & Mohammadi, T., Preparation of positively charged thin-film nanocomposite membranes based on the reaction between hydrolyzed polyacrylonitrile containing carbon nanomaterials and HPEI for water treatment application, Separation and Purification Technology, 242, 116826, 2020.
  • Setiawan, L., Shi, L., Krantz, W. B., & Wang, R., Explorations of delamination and irregular structure in poly (amide-imide)-polyethersulfone dual layer hollow fiber membranes, Journal of membrane science, 423, 73-84, 2012.
  • Hashemifard, S. A., Ismail, A. F., & Matsuura, T., Co-casting technique for fabricating dual-layer flat sheet membranes for gas separation, Journal of membrane science, 375(1-2), 258-267, 2011.
  • Wenten, I. G., Khoiruddin, K., Wardani, A. K., Aryanti, P. T. P., Astuti, D. I., & Komaladewi, A. A. I. A. S. Preparation of antifouling polypropylene/ZnO composite hollow fiber membrane by dip-coating method for peat water treatment. Journal of Water Process Engineering, 34, 101158. (2020).
  • Kim, K. J., Chowdhury, G., & Matsuura, T., Low pressure reverse osmosis performances of sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide) thin film composite membranes: effect of coating conditions and molecular weight of polymer. Journal of Membrane Science, 179(1-2), 43-52, 2000.
  • Lau W.J., Polyamide Membrane, In: Encyclopedia of Membranes, Drioli E., Giorno L. (eds), Springer, Berlin, Heidelberg, 2015.
  • Xu, G. R., Xu, J. M., Feng, H. J., Zhao, H. L., & Wu, S. B., Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review, Desalination, 417, 19-35, 2017.
  • Yılmaz M., Membran Biyoreaktörlerde (MBR) Tıkanma Kontrolü için Titreşim Uygulamaları, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2016.
  • Salt Y., Dinçer S., An Option for Special Separation Operations: Membrane Processes, SIGMA, Journal of Engineering and Natural Sciences, 4 (212), 1–23, 2006.
  • Jevons, K., Awe, M., Economic benefits of membrane technology vs. evaporator, Desalination, 250(3), 961-963, 2010.
  • Dairy Processing Handbook, Teknotext AB, Tetra Pak Processing Systems, Lund, Sweden.
  • Pan, B., Yan, P., Zhu, L, Li, X., Concentration of coffee extract using nanofiltration membranes, Desalination, 317, 127-131, 2013.
  • Kerr, W.L., Food Drying and Evaporation Processing Operations, Handbook of Farm, Dairy, and Food Machinery, William Andrew Inc., Georgia, USA, 303-340, 2007.
  • Sequera, S.C., Ruiz, Y., Moreno, F.L., Quintanilla-Carvajal, M.X., Salcedo, F., Rheological evaluation of gelation during thermal treatments in block freeze concentration of coffee extract, Journal of Food Engineering, 242, 76-83, 2019.
  • Moreno, F.L., Hernandez, E., Raventos, M., Robles, C., Ruiz, Y., A process to concentrate coffee extract by the integratiion of falling film and block freeze-concentration, Journal of Food Engineering, 128, 88-95, 2014.
  • Lane, S., Palmer, J., Christie, B.R., Ehlting, J., Le, C.H., Can cold brew coffee be convenient? A pilot study for caffeine content in cold brew coffee concentrate using high performance liquid chromatography, The Arbutus Review, 8(1), 2017.
  • Mulder, M., Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
  • Stabile R.L., Economics of reverse osmosis and multistage evaporation for concentrating skim milk from 8.8 to 45% solids, Journal of dairy Science, 66(8), 1765-1772, 1982.
  • Çağlar A., Çağlar M.Y., Süt ve Süt Ürünleri, Uluslararası 2. Helal ve Sağlıklı Gıda Kongresi, Konya- Türkiye, 18-76, 7-10 Kasım, 2013.
  • Brans G., Schroën C.G.P.H., Van Der Sman R.G.M., Boom R.M., Membrane fractionation of milk: State of the art and challenges, Journal of Membrane Science, 243 (1–2), 263–72, 2004.
  • O’Mahony J.A., Tuohy J.J., Further Applications of Membrane Filtration in Dairy Processing, In Membrane Processing: Dairy and Beverage Applications, Blackwell Publishing Ltd.225–61, 2012.
  • Griep E.R., Cheng Y., Moraru C.I., Efficient removal of spores from skim milk using cold microfiltration: Spore size and surface property considerations, Journal of Dairy Science, 101 (11), 9703–13, 2018.
  • Ünver N., Çelik Ş., İçme Sütü Üretiminde ESL (Extended Shelf Life) Teknolojisinin Kullanımı, Harran Tarım ve Gıda Bilimleri Dergisi, 21 (2), 247–58, 2017.
  • Fritsch J., Moraru C.I., Development and optimization of a carbon dioxide-aided cold microfiltration process for the physical removal of microorganisms and somatic cells from skim milk, Journal of Dairy Science, 91 (10), 3744–60, 2008.
  • Wang D., Fritsch J., Moraru C.I., Shelf life and quality of skim milk processed by cold microfiltration with a 1.4-μm pore size membrane, with or without heat treatment, Journal of Dairy Science, 102 (10), 8798–806, 2019.
  • Hu K., Dickson J.M., Membrane Processing for Dairy Ingredient Separation, John Wiley & Sons, Ltd, Chichester, UK, 2015.
  • Bildyukevich A. V., Plisko T. V., Lipnizki F., Pratsenko S.A., Correlation between membrane surface properties, polymer nature and fouling in skim milk ultrafiltration, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605 (July 2020), 125387, 2020.
  • Yaman İ., Bekik K., Çeri Z., Şen Z., Dinçer B., Süt ve Laktozsuz Sütlerin Fiziksel ve Kimyasal Analizlerinin Değerlendirilmesi, TÜBİTAK Projesi, Recep Tayyip Erdoğan Üniversitesi Çayeli- Rize,1–10, 2019.
  • Malik T.F., Panuganti K.K., Lactose Intolerance, StatPearls Publishing, 2020.
  • Zhang H., Tao Y., He Y., Pan J., Yang K., Shen J., Gao C., Preparation of Low-Lactose Milk Powder by Coupling Membrane Technology, ACS Omega, 5 (15), 8543–50, 2020.
  • Govindasamy-Lucey S., Jaeggi J.J., Martinelli C., Johnson M.E., Lucey J.A., Standardization of milk using cold ultrafiltration retentates for the manufacture of Swiss cheese: Effect of altering coagulation conditions on yield and cheese quality, Journal of Dairy Science, 94 (6), 2719–30, 2011.
  • Xia X., Tobin J.T., Sharma P., Fenelon M., McSweeney P.L.H., Sheehan J.J., Application of a cascade membrane filtration process to standardise serum protein depleted cheese milk for cheddar cheese manufacture, International Dairy Journal, 110, 104796, 2020.
  • Walstra, P., Wouters, J.T.M. & Geurts, T.J., Concentrates milks. Dairy Science and Technology, CRC Press (Taylor & Francis group), Boca Raton, FL, 497–512, 2006.
  • Garem A., Schuck P., Maubois J.-L., Cheesemaking properties of a new dairy-based powder made by a combination of microfiltration and ultrafiltration, Le Lait, INRA Editions, 80 (1), 2000.
  • Jukkola A., Hokkanen S., Kämäräinen T., Partanen R., Heino A., Rojas O.J., Changes in milk fat globules and membrane lipids under the shear fields of microfiltration and centrifugation, Journal of Membrane Science, 573, 218–25, 2019.
  • Hansen S.F., Petrat-Melin B., Rasmussen J.T., Larsen L.B., Ostenfeld M.S., Wiking L., Placing pasteurisation before or after microfiltration impacts the protein composition of milk fat globule membrane material, International Dairy Journal, 81, 35–41, 2018.
  • Bouteille R., Gaudet M., Lecanu B., This H., Monitoring lactic acid production during milk fermentation by in situ quantitative proton nuclear magnetic resonance spectroscopy, Journal of Dairy Science, 96 (4), 2071–80, 2013.
  • Norddahl, B., Fermentative production and isolation of lactic acid, United States of America Patent Application, No. 6319382B1, 2001.
  • Diblíková L., Čurda L., Kinčl J., The effect of dry matter and salt addition on cheese whey demineralisation, International Dairy Journal, 31 (1), 29–33, 2013.
  • HASANOĞLU A., Peynir altı suyu derişikleştirilme süreci için çeşitli membran temas ettirici sistemlerinin karşılaştırılması, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35 (3), 1565–74, 2020.
  • Koch Membrane Systems Inc., Dairy Solutions. https://www.kochseparation.com/wp-content/uploads/2020/10/dairy-brochure.pdf. 2015. Erişim Tarihi 1 Aralık, 2020.
  • Lauzin A., Pouliot Y., Britten M., Understanding the differences in cheese-making properties between reverse osmosis and ultrafiltration concentrates, Journal of Dairy Science, 103 (1), 201–9, 2020.
  • Christiansen M.V., Pedersen T.B., Brønd J.N., Skibsted L.H., Ahrné L., Physical properties and storage stability of reverse osmosis skim milk concentrates: Effects of skim milk pasteurisation, solid content and thermal treatment, Journal of Food Engineering, 278 (January), 2020.
  • Valencia A.P., Doyen A., Benoit S., Margni M., Pouliot Y., Effect of ultrafiltration of milk prior to fermentation on mass balance and process efficiency in Greek-style yogurt manufacture, Foods, 7 (9), 2018.
  • Fernández García L., Riera Rodríguez F.A., Combination of microfiltration and heat treatment for ESL milk production: Impact on shelf life, Journal of Food Engineering, 128 1–9, 2014.
  • Hui Y.H., Handbook of Fruits and Fruit Processing, Blackwell Publishing, Ames, Iowa, USA, 2006.
  • Henning S.M., Yang J., Shao P., Lee R.P., Huang J., Ly A., Hsu M., Lu Q.Y., Thames G., Heber D., Li Z., Health benefit of vegetable/fruit juice-based diet: Role of microbiome, Scientific Reports, 7 (1), 1–9, 2017.
  • Türk Gıda Kodeksi Meyve Suyu ve Benzeri Ürünler Tebliği, T.C. Resmî Gazete, 29080, Tebliğ No: 2014/34, 6 Ağustos 2014.
  • Jiao B., Cassano A., Drioli E., Recent advances on membrane processes for the concentration of fruit juices: A review, Journal of Food Engineering, 63 (3), 303–24, 2004.
  • Urošević T., Povrenović D., Vukosavljević P., Urošević I., Stevanović S., Recent developments in microfiltration and ultrafiltration of fruit juices, Food and Bioproducts Processing, 106 147–61, 2017.
  • Echavarría A.P., Falguera V., Torras C., Berdún C., Pagán J., Ibarz A., Ultrafiltration and reverse osmosis for clarification and concentration of fruit juices at pilot plant scale, LWT- Food Science and Technology, 46 (1), 189–95, 2012.
  • Cassano A., Donato L., Drioli E., Ultrafiltration of kiwifruit juice: Operating parameters, juice quality and membrane fouling, Journal of Food Engineering, 79 (2), 613–21, 2007.
  • Capannelli G., Bottino A., Munari S., Lister D.G., Maschio G., Becchi I., The use of membrane processes in the clarification of orange and lemon juices, Journal of Food Engineering, 21 (4), 473–83, 1994.
  • Severcan S.S., Uzal N., Kahraman K., Clarification of pomegranate juice using PSF microfiltration membranes fabricated with nano TiO 2 and Al 2 O 3, Journal of Food Processing and Preservation, 44 (8), 2020.
  • Gulec H.A., Bagci P.O., Bagci U., Performance enhancement of ultrafiltration in apple juice clarification via low-pressure oxygen plasma: A comparative evaluation versus pre-flocculation treatment, LWT- Food Science and Technology, 91 511–7, 2018.
  • Veleirinho B., Lopes-da-Silva J.A., Application of electrospun poly (ethylene terephthalate) nanofiber mat to apple juice clarification, Process Biochemistry, 44 (3), 353–6, 2009.
  • Kahraman K., Uzal N., Severcan S.Ş., PSF/SiO2 Nanokompozit Membran Üretimi ve Elma Suyu Berraklaştırma Prosesinde Kullanımı, Gida / the Journal of Food, 44 618–28, 2019.
  • Chandini S.K., Rao L.J., Subramanian R., Membrane Clarification of Black Tea Extracts, Food and Bioprocess Technology, 6 (8), 1926–43, 2013.
  • Salehi F., Current and future applications for nanofiltration technology in the food processing, Food and Bioproducts Processing, 92 (2), 161–77, 2014.
  • Warczok J., Ferrando M., López F., Güell C., Concentration of apple and pear juices by nanofiltration at low pressures, Journal of Food Engineering, 63 (1), 63–70, 2004.
  • Rosenberg M., Current and future applications for membrane processes in the dairy industry, Trends in Food Science and Technology, 6 (1), 12–9, 1995.
  • Aguiar I.B., Miranda N.G.M., Gomes F.S., Santos M.C.S., Freitas D.D.G.C., Tonon R. V., Cabral L.M.C., Physicochemical and sensory properties of apple juice concentrated by reverse osmosis and osmotic evaporation, Innovative Food Science and Emerging Technologies, 16 137–42, 2012.
  • Cassano A., Conidi C., Drioli E., Clarification and concentration of pomegranate juice (Punica granatum L.) using membrane processes, Journal of Food Engineering, 107 (3–4), 366–73, 2011.
  • Rehman W.U., Muhammad A., Khan Q.A., Younas M., Rezakazemi M., Pomegranate juice concentration using osmotic distillation with membrane contactor, Separation and Purification Technology, 224 481–9, 2019.
  • Rehman W.U., Muhammad A., Younas M., Wu C., Hu Y., Li J., Effect of membrane wetting on the performance of PVDF and PTFE membranes in the concentration of pomegranate juice through osmotic distillation, Journal of Membrane Science, 584 66–78, 2019.
  • Onsekizoglu P., Production of high quality clarified pomegranate juice concentrate by membrane processes, Journal of Membrane Science, 442 264–71, 2013.
  • Onsekizoğlu P., New Membrane Processes for Concentration of Fruit Juices: Membrane Distillation, 37 103–10, 2012.
  • Onsekizoglu P., Bahceci K.S., Acar M.J., Clarification and the concentration of apple juice using membrane processes: A comparative quality assessment, Journal of Membrane Science, 352 (1–2), 160–5, 2010.
  • Cassano A., Jiao B., Drioli E., Production of concentrated kiwifruit juice by integrated membrane process, Food Research International, 37 (2), 139–48, 2004.
  • De Oliveira R.C., Docê R.C., De Barros S.T.D., Clarification of passion fruit juice by microfiltration: Analyses of operating parameters, study of membrane fouling and juice quality, Journal of Food Engineering, 111 (2), 432–9, 2012.
  • Grainger K., Tattersall H., Wine Production: Vine To Bottle, 2007.
  • Butzke C., Winemaking Problems Solved. In Winemaking Problems Solved, 2010.
  • Moreno-Arribas, M. V., & Polo, M. C. (2009). Wine chemistry and biochemistry. In Wine Chemistry and Biochemistry. https://doi.org/10.1007/978-0-387-74118-5
  • El Rayess Y., Albasi C., Bacchin P., Taillandier P., Raynal J., Mietton-Peuchot M., Devatine A., Cross-flow microfiltration applied to oenology: A review, Journal of Membrane Science, 382 (1–2), 1–19, 2011.
  • Palacios V.M., Caro I., Pérez L., Comparative study of crossflow microfiltration with conventional filtration of sherry wines, Journal of Food Engineering, 54 (2), 95–102, 2002.
  • Urkiaga A., De Las Fuentes L., Acilu M., Uriarte J., Membrane comparison for wine clarification by microfiltration, Desalination, 148 (1–3), 115–20, 2002.
  • Kontogiannopoulos K.N., Patsios S.I., Karabelas A.J., Tartaric acid recovery from winery lees using cation exchange resin: Optimization by Response Surface Methodology, Separation and Purification Technology, 165 32–41, 2016.
  • Gonçalves F., Fernandes C., Cameira dos Santos P., De Pinho M.N., Wine tartaric stabilization by electrodialysis and its assessment by the saturation temperature, Journal of Food Engineering, 59 (2–3), 229–35, 2003.
  • Bdiri M., Perreault V., Mikhaylin S., Larchet C., Hellal F., Bazinet L., Dammak L., Identification of phenolic compounds and their fouling mechanisms in ion-exchange membranes used at an industrial scale for wine tartaric stabilization by electrodialysis, Separation and Purification Technology, 233 (August 2019), 115995, 2020.
  • Nelson M., The barbarian’s beverage: A history of beer in ancient Europe, Routledge Taylor & Francis Group, 2005.
  • Cimini A., Moresi M., Combined enzymatic and crossflow microfiltration process to assure the colloidal stability of beer, LWT- Food Science and Technology, 90 132–7, 2018.
  • P. E. Yeung, “United States Patent (19),” no. 19, 1987.
  • Gan Q., Howell J.A., Field R.W., England R., Bird M.R., O’Shaughnessy C.L., MeKechinie M.T., Beer clarification by microfiltration- Product quality control and fractionation of particles and macromolecules, Journal of Membrane Science, 194 (2), 185–96, 2001.
  • Cimini A., Moresi M., Beer Clarification Using Ceramic Tubular Membranes, Food and Bioprocess Technology, 7 (9), 2694–710, 2014.
  • Cimini A., Moresi M., Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality, Journal of food science, 81 (10), E2521–8, 2016.
  • Purwasasmita M., Kurnia D., Mandias F.C., Khoiruddin, Wenten I.G., Beer dealcoholization using non-porous membrane distillation, Food and Bioproducts Processing, 94 180–6, 2015.
  • Catarino M., Mendes A., Madeira L.M., Ferreira A., Alcohol removal from beer by reverse osmosis, Separation Science and Technology, 42 (13), 3011–27, 2007.
  • Ambrosi A., Motke M.B., Souza-Silva É.A., Zini C.A., McCutcheon J.R., Cardozo N.S.M., Tessaro I.C., Beer dealcoholization by forward osmosis diafiltration, Innovative Food Science and Emerging Technologies, 63 102371, 2020.
  • De Lima, L. M., Elias, L.P., Silva, M.M.C.D., Da Silva, K.V. ve Pacheco, A.S.V., Behavioral aspects of the coffee consumer in different countries: the case of brazil, 2020.
  • Wonorahardjo, S., Yuniawati, N., Molo, A.D.P., Rusdi, H.O., Purnomo, H., Different chemical compound profiles of indonesian coffee beans as studied chromatography/mass spectrometry, Esrth and Environmental Science, 276, 2019, DOI: 10.1088/1755-1315/276/1/012065.
  • Angeloni, G., Guerrini, L., Masella, P., Innocenti, M., Bellumori, M., PArenti, A., Characterization and comparison of cold brew and cold drip coffee exraction methods, Journal of the Science of Food and Agriculture, 2018, DOI: 10.1002/jsfa.9200.
  • Hamilton, L.M., Lahne, J., Assessment of instructions on panelist cognitive framework and free sorting task results: a case study of cold brew coffee, Food Quality and Preference, 83, 2020, DOI: 10.1016/j.foodqual.2020.103889.
  • Dat, L.Q., Quyen, N.T.N., Nanofiltration for concentration of roasted coffee extract: from bench to pilot, The 3rd International Conference on Chemical Engineering, food and Biotechnology (ICCFB2017), Ho Chi Minh City-Vietnam, 12-13 Ekim, 2017.
  • Çay Araştırma ve Uygulama Merkezi. Türkiye’de Çay. https://www.caymer.com.tr/icerik/turkiyede-cay. 2017. Erişim Tarihi 30 Aralık,2020.
  • Çakıloğlu E., Bayrak A., Çay İşleme Sırasında Aroma Maddeleri̇ndeki Deği̇şi̇m, Gıda, 34, 115–9, 2009.
  • Zhu Z., Liu D., Cai S., Tan Y., Liao J., Fang Y., Dyes removal by composite membrane of sepiolite impregnated polysulfone coated by chemical deposition of tea polyphenols, Chemical Engineering Research and Design, 156 289–99, 2020.
  • Evans P.J., Bird M.R., Rogers D., Wright C.J., Measurement of polyphenol-membrane interaction forces during the ultrafiltration of black tea liquor, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 335 (1–3), 148–53, 2009.
  • Kawakatsu T., Kobayashi T., Sano Y., Nakajima M., Clarification of Green Tea Extract by Microfiltration and Ultrafiltration, Bioscience, Biotechnology, and Biochemistry, 59:6, 1016-1020, 1995.
  • Chandini S.K., Rao L.J., Subramanian R., Membrane Clarification of Black Tea Extracts, Food and Bioprocess Technology, 6 (8), 1926–43, 2013.
  • Zhang T., Huang W., Jia T., Liu Y., Yao S., Ionic liquid@β-cyclodextrin-gelatin composite membrane for effective separation of tea polyphenols from green tea, Food Chemistry, 333 (April), 127534, 2020.
  • Sousa L. dos S., Cabral B.V., Madrona G.S., Cardoso V.L., Reis M.H.M., Purification of polyphenols from green tea leaves by ultrasound assisted ultrafiltration process, Separation and Purification Technology, 168 188–98, 2016.
  • Li J., Liao H., Sun Y., Li R., Zhu B., Zhong Z., Yao Z., Fabrication of MWCNTs/PDMS mixed matrix membranes for recovery of volatile aromatic compounds from brewed black tea, Separation and Purification Technology, 259 (July 2020), 118101, 2020.
  • Chen B., Xiong X., Yao Z., Yin N., Low Z.X., Zhong Z., Integrated membrane process for wastewater treatment from production of instant tea powders, Desalination, 355 147–54, 2015.
  • Saha S., Boro R., Das C., Treatment of tea industry wastewater using coagulation-spinning basket membrane ultrafiltration hybrid system, Journal of Environmental Management, 244 (April), 180–8, 2019.
  • Van Mil, P.J.J.M., Bouman, S.R., Freeze concentration of dairy products, Netherlands Milk and Dairy Journal, 44, 21-31, 1990.
  • Van Pelt, W.H.M., Bassoli, D.G., Freeze concentration: coffee-product and economic analysis, Cafe Cacao The, 34(1), 37-45, 1990.
  • Pan Z., Song C., Li L., Wang H., Pan Y., Wang C., Li J., Wang T., Feng X., Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: Recent advances and future prospects, Chemical Engineering Journal, 376 (November), 1–19, 2019.
Year 2022, Volume: 37 Issue: 3, 1713 - 1734, 28.02.2022
https://doi.org/10.17341/gazimmfd.881087

Abstract

Project Number

3200785 ve 1180083

References

  • Conidi C., Castro-Muñoz R., Cassano A., Nanofiltration in beverage industry, In Nanotechnology in the Beverage Industry, Elsevier, 525–48, 2020.
  • Berryman P., Advances in Food and Beverage Labelling: Information and Regulations, Elsevier Inc.2014.
  • Jain A., De S., Processing of Beverages by Membranes. In: Processing and Sustainability of Beverages, Elsevier, 517–60, 2019.
  • Shachman M., The Soft Drinks Companion: A Technical Handbook for the Beverage Industry (1st ed.)., CRC Press, 2004.
  • Buglass A.J., Handbook of Alcoholic Beverages: Technical, Analytical and Nutritional Aspects, John Wiley & Sons, Ltd, Chichester, UK, 1–2, 2011.
  • Walker G.M., Walker R.S.K., Enhancing Yeast Alcoholic Fermentations, Advances in Applied Microbiology, 105 87–129, 2018.
  • Fane, A. T., Wang, R., & Jia, Y., Membrane technology: past, present and future. In Membrane and Desalination Technologies, 1-45, Humana Press, Totowa, NJ, 2011.
  • Baker R.W., Membrane Technology and Applications, John Wiley & Sons, Ltd, Chichester, UK, 2004.
  • Purkait M.K., Mohanty K. (Eds.), Membrane Technologies and Applications (1st ed.), CRC Press, 2012.
  • T.C. Çevre ve Şehircilik Bakanlığı Su/Atıksu Arıtılması ve Geri Kazanılmasında Membran teknolojileri ve Uygulamaları Cilt 1: Membran Teknolojileri ve Su Arıtma, İsmail Koyuncu, Yıldızlar Ofset Mat. Yay. Rek. İç Dış Tic. Ltd. Şti., Ankara, Türkiye, 2018.
  • Kumar P., Sharma N., Ranjan R., Kumar S., Bhat Z.F., Jeong D.K., Perspective of membrane technology in dairy industry: A review, Asian-Australasian Journal of Animal Sciences, 26 (9), 1347–58, 2013.
  • Tabani H., Nojavan S., Alexovič M., Sabo J., Recent developments in green membrane-based extraction techniques for pharmaceutical and biomedical analysis, Journal of Pharmaceutical and Biomedical Analysis, Elsevier B.V., 160 244–67, 2018.
  • Ergün A., LBL İnce Film Membranların Ters Osmoz Performanslarının İncelenmesi, Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2017.
  • Castro-Munoz, R., Boczkaj, G., Gontarek, E., Cassano, A., Membrane technologies assisting plant-based and agro-food by-products processing: a comprehensive review, Trends in Food Science & Technology, 95, 219-232, 2020.
  • Peinemann K.V., Nunes S.P., Giorno L., Membrane Technology, Vol. 3, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 3, 2010.
  • Peyravi M., Jahanshahi M., Banafti S., Application of membrane technology in beverage production and safety, In Safety Issues in Beverage Production: Volume 18: The Science of Beverages, Elsevier, 271–308, 2019.
  • Abdel-Fatah, M.A., Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Engineering Journal, 9(4), 3077-3092, 2018.
  • Mohammad, A.W., Teow, Y.H., Ang, W.L., Chung, Y.T., Oatley-Radcliffe, D.L., Hilal, C., Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226-254, 2015.
  • Technavio. Membrane Market for Food and Beverage Processing Market by Geography and Filtration Process- Forecast and Analysis 2020-2024. https://www.technavio.com/report/membrane-market-for-food-and-beverage-processing-market-industry-analysis. Ekim 2020. Erişim Tarihi Kasım 12, 2020.
  • Daufin G., Escudier J.P., Carrére H., Bérot S., Fillaudeau L., Decloux M., Recent and emerging applications of membrane processes in the food and dairy industry, Food and Bioproducts Processing: Transactions of the Institution of of Chemical Engineers, Part C, 79 (2), 89–102, 2001.
  • Vincze, I., Vatai G., Application of nanofiltration for coffee extract concentration, Desalination, 162(1), 287-294, 2004.
  • Bekassy-Molnar E., Lipnizki F., Vatai, G., Engineering Aspects of Membrane Separation and Application in Food Processing (R. Field, Ed.) (1st ed.). CRC Press, 2016.
  • Cassano A., Drioli E., Integrated Membrane Operations, De Gruyter, Berlin, Boston, 2013.
  • Tsuru, T., Nano/subnano-tuning of porous ceramic membranes for molecular separation, Journal of Sol-Gel Science and Technology, 46(3), 349-361, 2008.
  • Topuz, B., Gas permeation through sol-gel derived alumina and silica based membranes, Doktora Tezi, İzmir Institute of Technology, Institute of Engineering and Sciences, İzmir, 2009.
  • Topuz, B., & Çiftçioğlu, M., Sol–gel derived mesoporous and microporous alumina membranes. Journal of sol-gel science and technology, 56(3), 287-299, 2010.
  • Topuz, B., & Çiftçioğlu, M. Preparation of particulate/polymeric sol–gel derived microporous silica membranes and determination of their gas permeation properties. Journal of Membrane Science, 350(1-2), 42-52, 2010.
  • Topuz, B., & Çiftçioğlu, M., Preparation and characterization of diphasic sol-gel derived unsupported mullite membranes, Journal of sol-gel science and technology, 58(1), 6-11, 2011.
  • Duvarci, Ö. Ç., & Çiftçioğlu, M., Preparation and characterization of nanocrystalline titania powders by sonochemical synthesis, Powder technology, 228, 231-240, 2012.
  • Hanaor, D. A., & Sorrell, C. C., Review of the anatase to rutile phase transformation, Journal of Materials science, 46(4), 855-874, 2011.
  • Hanaor, D., Michelazzi, M., Veronesi, P., Leonelli, C., Romagnoli, M., & Sorrell, C., Anodic aqueous electrophoretic deposition of titanium dioxide using carboxylic acids as dispersing agents, Journal of the European Ceramic Society, 31(6), 1041-1047, 2011.
  • Huang, X., Leal, M., & Li, Q., Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes, Water research, 42(4-5), 1142-1150, 2008.
  • Yan, J., Wu, G., Guan, N., Li, L., Li, Z., & Cao, X. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO 2: anatase versus rutile. Physical Chemistry Chemical Physics, 15(26), 10978-10988, 2013.
  • Loeb, S., & Sourirajan, S., Sea water demineralization by means of an osmotic membrane, Saline Water Conversion—II, 117-132, 1962.
  • Ren, J., & Wang, R. Preparation of polymeric membranes, Membrane and Desalination Technologies, Handbook of Environmental Engineering , Cilt 13, Editör: Wang L.K., Chen J.P., Hung YT., Shammas N.K., Humana Press, Totowa, NJ, 47-100, 2011.
  • Abdullah, N., Rahman, M. A., Othman, M. H. D., Jaafar, J., & Ismail, A. F., Membranes and Membrane Processes: Fundamentals. In Current Trends and Future Developments on (Bio-) Membranes, 45-70, Elsevier, 2018.
  • Purkait, M. K., Sinha, M. K., Mondal, P., & Singh, R., Introduction to membranes. In Interface science and technology, Vol. 25, 1-37, Elsevier. (2018).
  • Tewari, P.K., Nanocomposite Membrane Technology: Fundamentals and Applications, CRC Press, Boca Raton, A.B.D., 2015. https://doi.org/10.1201/b19213
  • Escobar-Ferrand, L., Layer by Layer, Nano-particle “Only” Surface Modification of Filtration Membranes, Doctoral Dissertation, Columbia University, 2013.
  • Petersen, R. J., Composite reverse osmosis and nanofiltration membranes, Journal of membrane science, 83(1), 81-150, 1993.
  • Jons, S., Ries, P., & McDonald, C. J., Porous latex composite membranes: fabrication and properties, Journal of membrane science, 155(1), 79-99, 1999.
  • Song, Y., Sun, P., Henry, L. L., & Sun, B., Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process, Journal of membrane science, 251(1-2), 67-79, 2005.
  • Yuan, S., Zhang, G., Zhu, J., Mamrol, N., Liu, S., Mai, Z., Puyvelde, P.V., Van der Bruggen, B., Hydrogel assisted interfacial polymerization for advanced nanofiltration membranes, Journal of Materials Chemistry A, 8(6), 3238-3245, 2020.
  • Gong, Y., Gao, S., Tian, Y., Zhu, Y., Fang, W., Wang, Z., Jin, J., Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination, Journal of Membrane Science, 600, 117874, 2020.
  • Liang, Y., Zhu, Y., Liu, C., Lee, K. R., Hung, W. S., Wang, Z., Li, Y., Elimelech, M., Jin, J., Lin, S., Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation, Nature communications, 11(1), 1-9, 2020.
  • Bruening, M., Controlling the ion-permeability of layered polyelectrolyte films and membranes, In Multilayer thin films, 487-510, Wiley–VCH Weinheim, 2003.
  • Fadhillah, F., Javaid Zaidi, S. M., Khan, Z., Khaled, M., Rahman, F., & Hammond, P., Development of multilayer polyelectrolyte thin‐film membranes fabricated by spin assisted layer‐by‐layer assembly, Journal of applied polymer science, 126(4), 1468-1474, 2012.
  • te Brinke, E., Achterhuis, I., Reurink, D. M., de Grooth, J., & de Vos, W. M., Multiple approaches to the buildup of asymmetric polyelectrolyte multilayer membranes for efficient water purification, ACS Applied Polymer Materials, 2(2), 715-724, 2020.
  • Ergün, A., Tümer, E. H., Cengiz, H. Y., & Deligöz, H., Monitoring the Salt Stability of Layer‐by‐Layer Self‐Assembled Films From Polyelectrolyte Blends by Quartz Crystal Microbalance‐Dissipation and Their Ion Separation Performances, Polymer Engineering & Science, 60(5), 1006-1018, 2020.
  • Arslan, M., Dönmez, G., Ergün, A., Okutan, M., Albayrak Arı, G., & Deligöz, H., Preparation, characterization, and separation performances of novel surface modified LbL composite membranes from polyelectrolyte blends and MWCNT, Polymer Engineering & Science, 60(2), 341-351, 2020.
  • Liu, Y., Wang, R., & Chung, T. S., Chemical cross-linking modification of polyimide membranes for gas separation, Journal of Membrane Science, 189(2), 231-239, 2001.
  • Valamohammadi, E., Behdarvand, F., Tofighy, M. A., & Mohammadi, T., Preparation of positively charged thin-film nanocomposite membranes based on the reaction between hydrolyzed polyacrylonitrile containing carbon nanomaterials and HPEI for water treatment application, Separation and Purification Technology, 242, 116826, 2020.
  • Setiawan, L., Shi, L., Krantz, W. B., & Wang, R., Explorations of delamination and irregular structure in poly (amide-imide)-polyethersulfone dual layer hollow fiber membranes, Journal of membrane science, 423, 73-84, 2012.
  • Hashemifard, S. A., Ismail, A. F., & Matsuura, T., Co-casting technique for fabricating dual-layer flat sheet membranes for gas separation, Journal of membrane science, 375(1-2), 258-267, 2011.
  • Wenten, I. G., Khoiruddin, K., Wardani, A. K., Aryanti, P. T. P., Astuti, D. I., & Komaladewi, A. A. I. A. S. Preparation of antifouling polypropylene/ZnO composite hollow fiber membrane by dip-coating method for peat water treatment. Journal of Water Process Engineering, 34, 101158. (2020).
  • Kim, K. J., Chowdhury, G., & Matsuura, T., Low pressure reverse osmosis performances of sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide) thin film composite membranes: effect of coating conditions and molecular weight of polymer. Journal of Membrane Science, 179(1-2), 43-52, 2000.
  • Lau W.J., Polyamide Membrane, In: Encyclopedia of Membranes, Drioli E., Giorno L. (eds), Springer, Berlin, Heidelberg, 2015.
  • Xu, G. R., Xu, J. M., Feng, H. J., Zhao, H. L., & Wu, S. B., Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment-a review, Desalination, 417, 19-35, 2017.
  • Yılmaz M., Membran Biyoreaktörlerde (MBR) Tıkanma Kontrolü için Titreşim Uygulamaları, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2016.
  • Salt Y., Dinçer S., An Option for Special Separation Operations: Membrane Processes, SIGMA, Journal of Engineering and Natural Sciences, 4 (212), 1–23, 2006.
  • Jevons, K., Awe, M., Economic benefits of membrane technology vs. evaporator, Desalination, 250(3), 961-963, 2010.
  • Dairy Processing Handbook, Teknotext AB, Tetra Pak Processing Systems, Lund, Sweden.
  • Pan, B., Yan, P., Zhu, L, Li, X., Concentration of coffee extract using nanofiltration membranes, Desalination, 317, 127-131, 2013.
  • Kerr, W.L., Food Drying and Evaporation Processing Operations, Handbook of Farm, Dairy, and Food Machinery, William Andrew Inc., Georgia, USA, 303-340, 2007.
  • Sequera, S.C., Ruiz, Y., Moreno, F.L., Quintanilla-Carvajal, M.X., Salcedo, F., Rheological evaluation of gelation during thermal treatments in block freeze concentration of coffee extract, Journal of Food Engineering, 242, 76-83, 2019.
  • Moreno, F.L., Hernandez, E., Raventos, M., Robles, C., Ruiz, Y., A process to concentrate coffee extract by the integratiion of falling film and block freeze-concentration, Journal of Food Engineering, 128, 88-95, 2014.
  • Lane, S., Palmer, J., Christie, B.R., Ehlting, J., Le, C.H., Can cold brew coffee be convenient? A pilot study for caffeine content in cold brew coffee concentrate using high performance liquid chromatography, The Arbutus Review, 8(1), 2017.
  • Mulder, M., Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
  • Stabile R.L., Economics of reverse osmosis and multistage evaporation for concentrating skim milk from 8.8 to 45% solids, Journal of dairy Science, 66(8), 1765-1772, 1982.
  • Çağlar A., Çağlar M.Y., Süt ve Süt Ürünleri, Uluslararası 2. Helal ve Sağlıklı Gıda Kongresi, Konya- Türkiye, 18-76, 7-10 Kasım, 2013.
  • Brans G., Schroën C.G.P.H., Van Der Sman R.G.M., Boom R.M., Membrane fractionation of milk: State of the art and challenges, Journal of Membrane Science, 243 (1–2), 263–72, 2004.
  • O’Mahony J.A., Tuohy J.J., Further Applications of Membrane Filtration in Dairy Processing, In Membrane Processing: Dairy and Beverage Applications, Blackwell Publishing Ltd.225–61, 2012.
  • Griep E.R., Cheng Y., Moraru C.I., Efficient removal of spores from skim milk using cold microfiltration: Spore size and surface property considerations, Journal of Dairy Science, 101 (11), 9703–13, 2018.
  • Ünver N., Çelik Ş., İçme Sütü Üretiminde ESL (Extended Shelf Life) Teknolojisinin Kullanımı, Harran Tarım ve Gıda Bilimleri Dergisi, 21 (2), 247–58, 2017.
  • Fritsch J., Moraru C.I., Development and optimization of a carbon dioxide-aided cold microfiltration process for the physical removal of microorganisms and somatic cells from skim milk, Journal of Dairy Science, 91 (10), 3744–60, 2008.
  • Wang D., Fritsch J., Moraru C.I., Shelf life and quality of skim milk processed by cold microfiltration with a 1.4-μm pore size membrane, with or without heat treatment, Journal of Dairy Science, 102 (10), 8798–806, 2019.
  • Hu K., Dickson J.M., Membrane Processing for Dairy Ingredient Separation, John Wiley & Sons, Ltd, Chichester, UK, 2015.
  • Bildyukevich A. V., Plisko T. V., Lipnizki F., Pratsenko S.A., Correlation between membrane surface properties, polymer nature and fouling in skim milk ultrafiltration, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605 (July 2020), 125387, 2020.
  • Yaman İ., Bekik K., Çeri Z., Şen Z., Dinçer B., Süt ve Laktozsuz Sütlerin Fiziksel ve Kimyasal Analizlerinin Değerlendirilmesi, TÜBİTAK Projesi, Recep Tayyip Erdoğan Üniversitesi Çayeli- Rize,1–10, 2019.
  • Malik T.F., Panuganti K.K., Lactose Intolerance, StatPearls Publishing, 2020.
  • Zhang H., Tao Y., He Y., Pan J., Yang K., Shen J., Gao C., Preparation of Low-Lactose Milk Powder by Coupling Membrane Technology, ACS Omega, 5 (15), 8543–50, 2020.
  • Govindasamy-Lucey S., Jaeggi J.J., Martinelli C., Johnson M.E., Lucey J.A., Standardization of milk using cold ultrafiltration retentates for the manufacture of Swiss cheese: Effect of altering coagulation conditions on yield and cheese quality, Journal of Dairy Science, 94 (6), 2719–30, 2011.
  • Xia X., Tobin J.T., Sharma P., Fenelon M., McSweeney P.L.H., Sheehan J.J., Application of a cascade membrane filtration process to standardise serum protein depleted cheese milk for cheddar cheese manufacture, International Dairy Journal, 110, 104796, 2020.
  • Walstra, P., Wouters, J.T.M. & Geurts, T.J., Concentrates milks. Dairy Science and Technology, CRC Press (Taylor & Francis group), Boca Raton, FL, 497–512, 2006.
  • Garem A., Schuck P., Maubois J.-L., Cheesemaking properties of a new dairy-based powder made by a combination of microfiltration and ultrafiltration, Le Lait, INRA Editions, 80 (1), 2000.
  • Jukkola A., Hokkanen S., Kämäräinen T., Partanen R., Heino A., Rojas O.J., Changes in milk fat globules and membrane lipids under the shear fields of microfiltration and centrifugation, Journal of Membrane Science, 573, 218–25, 2019.
  • Hansen S.F., Petrat-Melin B., Rasmussen J.T., Larsen L.B., Ostenfeld M.S., Wiking L., Placing pasteurisation before or after microfiltration impacts the protein composition of milk fat globule membrane material, International Dairy Journal, 81, 35–41, 2018.
  • Bouteille R., Gaudet M., Lecanu B., This H., Monitoring lactic acid production during milk fermentation by in situ quantitative proton nuclear magnetic resonance spectroscopy, Journal of Dairy Science, 96 (4), 2071–80, 2013.
  • Norddahl, B., Fermentative production and isolation of lactic acid, United States of America Patent Application, No. 6319382B1, 2001.
  • Diblíková L., Čurda L., Kinčl J., The effect of dry matter and salt addition on cheese whey demineralisation, International Dairy Journal, 31 (1), 29–33, 2013.
  • HASANOĞLU A., Peynir altı suyu derişikleştirilme süreci için çeşitli membran temas ettirici sistemlerinin karşılaştırılması, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35 (3), 1565–74, 2020.
  • Koch Membrane Systems Inc., Dairy Solutions. https://www.kochseparation.com/wp-content/uploads/2020/10/dairy-brochure.pdf. 2015. Erişim Tarihi 1 Aralık, 2020.
  • Lauzin A., Pouliot Y., Britten M., Understanding the differences in cheese-making properties between reverse osmosis and ultrafiltration concentrates, Journal of Dairy Science, 103 (1), 201–9, 2020.
  • Christiansen M.V., Pedersen T.B., Brønd J.N., Skibsted L.H., Ahrné L., Physical properties and storage stability of reverse osmosis skim milk concentrates: Effects of skim milk pasteurisation, solid content and thermal treatment, Journal of Food Engineering, 278 (January), 2020.
  • Valencia A.P., Doyen A., Benoit S., Margni M., Pouliot Y., Effect of ultrafiltration of milk prior to fermentation on mass balance and process efficiency in Greek-style yogurt manufacture, Foods, 7 (9), 2018.
  • Fernández García L., Riera Rodríguez F.A., Combination of microfiltration and heat treatment for ESL milk production: Impact on shelf life, Journal of Food Engineering, 128 1–9, 2014.
  • Hui Y.H., Handbook of Fruits and Fruit Processing, Blackwell Publishing, Ames, Iowa, USA, 2006.
  • Henning S.M., Yang J., Shao P., Lee R.P., Huang J., Ly A., Hsu M., Lu Q.Y., Thames G., Heber D., Li Z., Health benefit of vegetable/fruit juice-based diet: Role of microbiome, Scientific Reports, 7 (1), 1–9, 2017.
  • Türk Gıda Kodeksi Meyve Suyu ve Benzeri Ürünler Tebliği, T.C. Resmî Gazete, 29080, Tebliğ No: 2014/34, 6 Ağustos 2014.
  • Jiao B., Cassano A., Drioli E., Recent advances on membrane processes for the concentration of fruit juices: A review, Journal of Food Engineering, 63 (3), 303–24, 2004.
  • Urošević T., Povrenović D., Vukosavljević P., Urošević I., Stevanović S., Recent developments in microfiltration and ultrafiltration of fruit juices, Food and Bioproducts Processing, 106 147–61, 2017.
  • Echavarría A.P., Falguera V., Torras C., Berdún C., Pagán J., Ibarz A., Ultrafiltration and reverse osmosis for clarification and concentration of fruit juices at pilot plant scale, LWT- Food Science and Technology, 46 (1), 189–95, 2012.
  • Cassano A., Donato L., Drioli E., Ultrafiltration of kiwifruit juice: Operating parameters, juice quality and membrane fouling, Journal of Food Engineering, 79 (2), 613–21, 2007.
  • Capannelli G., Bottino A., Munari S., Lister D.G., Maschio G., Becchi I., The use of membrane processes in the clarification of orange and lemon juices, Journal of Food Engineering, 21 (4), 473–83, 1994.
  • Severcan S.S., Uzal N., Kahraman K., Clarification of pomegranate juice using PSF microfiltration membranes fabricated with nano TiO 2 and Al 2 O 3, Journal of Food Processing and Preservation, 44 (8), 2020.
  • Gulec H.A., Bagci P.O., Bagci U., Performance enhancement of ultrafiltration in apple juice clarification via low-pressure oxygen plasma: A comparative evaluation versus pre-flocculation treatment, LWT- Food Science and Technology, 91 511–7, 2018.
  • Veleirinho B., Lopes-da-Silva J.A., Application of electrospun poly (ethylene terephthalate) nanofiber mat to apple juice clarification, Process Biochemistry, 44 (3), 353–6, 2009.
  • Kahraman K., Uzal N., Severcan S.Ş., PSF/SiO2 Nanokompozit Membran Üretimi ve Elma Suyu Berraklaştırma Prosesinde Kullanımı, Gida / the Journal of Food, 44 618–28, 2019.
  • Chandini S.K., Rao L.J., Subramanian R., Membrane Clarification of Black Tea Extracts, Food and Bioprocess Technology, 6 (8), 1926–43, 2013.
  • Salehi F., Current and future applications for nanofiltration technology in the food processing, Food and Bioproducts Processing, 92 (2), 161–77, 2014.
  • Warczok J., Ferrando M., López F., Güell C., Concentration of apple and pear juices by nanofiltration at low pressures, Journal of Food Engineering, 63 (1), 63–70, 2004.
  • Rosenberg M., Current and future applications for membrane processes in the dairy industry, Trends in Food Science and Technology, 6 (1), 12–9, 1995.
  • Aguiar I.B., Miranda N.G.M., Gomes F.S., Santos M.C.S., Freitas D.D.G.C., Tonon R. V., Cabral L.M.C., Physicochemical and sensory properties of apple juice concentrated by reverse osmosis and osmotic evaporation, Innovative Food Science and Emerging Technologies, 16 137–42, 2012.
  • Cassano A., Conidi C., Drioli E., Clarification and concentration of pomegranate juice (Punica granatum L.) using membrane processes, Journal of Food Engineering, 107 (3–4), 366–73, 2011.
  • Rehman W.U., Muhammad A., Khan Q.A., Younas M., Rezakazemi M., Pomegranate juice concentration using osmotic distillation with membrane contactor, Separation and Purification Technology, 224 481–9, 2019.
  • Rehman W.U., Muhammad A., Younas M., Wu C., Hu Y., Li J., Effect of membrane wetting on the performance of PVDF and PTFE membranes in the concentration of pomegranate juice through osmotic distillation, Journal of Membrane Science, 584 66–78, 2019.
  • Onsekizoglu P., Production of high quality clarified pomegranate juice concentrate by membrane processes, Journal of Membrane Science, 442 264–71, 2013.
  • Onsekizoğlu P., New Membrane Processes for Concentration of Fruit Juices: Membrane Distillation, 37 103–10, 2012.
  • Onsekizoglu P., Bahceci K.S., Acar M.J., Clarification and the concentration of apple juice using membrane processes: A comparative quality assessment, Journal of Membrane Science, 352 (1–2), 160–5, 2010.
  • Cassano A., Jiao B., Drioli E., Production of concentrated kiwifruit juice by integrated membrane process, Food Research International, 37 (2), 139–48, 2004.
  • De Oliveira R.C., Docê R.C., De Barros S.T.D., Clarification of passion fruit juice by microfiltration: Analyses of operating parameters, study of membrane fouling and juice quality, Journal of Food Engineering, 111 (2), 432–9, 2012.
  • Grainger K., Tattersall H., Wine Production: Vine To Bottle, 2007.
  • Butzke C., Winemaking Problems Solved. In Winemaking Problems Solved, 2010.
  • Moreno-Arribas, M. V., & Polo, M. C. (2009). Wine chemistry and biochemistry. In Wine Chemistry and Biochemistry. https://doi.org/10.1007/978-0-387-74118-5
  • El Rayess Y., Albasi C., Bacchin P., Taillandier P., Raynal J., Mietton-Peuchot M., Devatine A., Cross-flow microfiltration applied to oenology: A review, Journal of Membrane Science, 382 (1–2), 1–19, 2011.
  • Palacios V.M., Caro I., Pérez L., Comparative study of crossflow microfiltration with conventional filtration of sherry wines, Journal of Food Engineering, 54 (2), 95–102, 2002.
  • Urkiaga A., De Las Fuentes L., Acilu M., Uriarte J., Membrane comparison for wine clarification by microfiltration, Desalination, 148 (1–3), 115–20, 2002.
  • Kontogiannopoulos K.N., Patsios S.I., Karabelas A.J., Tartaric acid recovery from winery lees using cation exchange resin: Optimization by Response Surface Methodology, Separation and Purification Technology, 165 32–41, 2016.
  • Gonçalves F., Fernandes C., Cameira dos Santos P., De Pinho M.N., Wine tartaric stabilization by electrodialysis and its assessment by the saturation temperature, Journal of Food Engineering, 59 (2–3), 229–35, 2003.
  • Bdiri M., Perreault V., Mikhaylin S., Larchet C., Hellal F., Bazinet L., Dammak L., Identification of phenolic compounds and their fouling mechanisms in ion-exchange membranes used at an industrial scale for wine tartaric stabilization by electrodialysis, Separation and Purification Technology, 233 (August 2019), 115995, 2020.
  • Nelson M., The barbarian’s beverage: A history of beer in ancient Europe, Routledge Taylor & Francis Group, 2005.
  • Cimini A., Moresi M., Combined enzymatic and crossflow microfiltration process to assure the colloidal stability of beer, LWT- Food Science and Technology, 90 132–7, 2018.
  • P. E. Yeung, “United States Patent (19),” no. 19, 1987.
  • Gan Q., Howell J.A., Field R.W., England R., Bird M.R., O’Shaughnessy C.L., MeKechinie M.T., Beer clarification by microfiltration- Product quality control and fractionation of particles and macromolecules, Journal of Membrane Science, 194 (2), 185–96, 2001.
  • Cimini A., Moresi M., Beer Clarification Using Ceramic Tubular Membranes, Food and Bioprocess Technology, 7 (9), 2694–710, 2014.
  • Cimini A., Moresi M., Beer Clarification by Novel Ceramic Hollow-Fiber Membranes: Effect of Pore Size on Product Quality, Journal of food science, 81 (10), E2521–8, 2016.
  • Purwasasmita M., Kurnia D., Mandias F.C., Khoiruddin, Wenten I.G., Beer dealcoholization using non-porous membrane distillation, Food and Bioproducts Processing, 94 180–6, 2015.
  • Catarino M., Mendes A., Madeira L.M., Ferreira A., Alcohol removal from beer by reverse osmosis, Separation Science and Technology, 42 (13), 3011–27, 2007.
  • Ambrosi A., Motke M.B., Souza-Silva É.A., Zini C.A., McCutcheon J.R., Cardozo N.S.M., Tessaro I.C., Beer dealcoholization by forward osmosis diafiltration, Innovative Food Science and Emerging Technologies, 63 102371, 2020.
  • De Lima, L. M., Elias, L.P., Silva, M.M.C.D., Da Silva, K.V. ve Pacheco, A.S.V., Behavioral aspects of the coffee consumer in different countries: the case of brazil, 2020.
  • Wonorahardjo, S., Yuniawati, N., Molo, A.D.P., Rusdi, H.O., Purnomo, H., Different chemical compound profiles of indonesian coffee beans as studied chromatography/mass spectrometry, Esrth and Environmental Science, 276, 2019, DOI: 10.1088/1755-1315/276/1/012065.
  • Angeloni, G., Guerrini, L., Masella, P., Innocenti, M., Bellumori, M., PArenti, A., Characterization and comparison of cold brew and cold drip coffee exraction methods, Journal of the Science of Food and Agriculture, 2018, DOI: 10.1002/jsfa.9200.
  • Hamilton, L.M., Lahne, J., Assessment of instructions on panelist cognitive framework and free sorting task results: a case study of cold brew coffee, Food Quality and Preference, 83, 2020, DOI: 10.1016/j.foodqual.2020.103889.
  • Dat, L.Q., Quyen, N.T.N., Nanofiltration for concentration of roasted coffee extract: from bench to pilot, The 3rd International Conference on Chemical Engineering, food and Biotechnology (ICCFB2017), Ho Chi Minh City-Vietnam, 12-13 Ekim, 2017.
  • Çay Araştırma ve Uygulama Merkezi. Türkiye’de Çay. https://www.caymer.com.tr/icerik/turkiyede-cay. 2017. Erişim Tarihi 30 Aralık,2020.
  • Çakıloğlu E., Bayrak A., Çay İşleme Sırasında Aroma Maddeleri̇ndeki Deği̇şi̇m, Gıda, 34, 115–9, 2009.
  • Zhu Z., Liu D., Cai S., Tan Y., Liao J., Fang Y., Dyes removal by composite membrane of sepiolite impregnated polysulfone coated by chemical deposition of tea polyphenols, Chemical Engineering Research and Design, 156 289–99, 2020.
  • Evans P.J., Bird M.R., Rogers D., Wright C.J., Measurement of polyphenol-membrane interaction forces during the ultrafiltration of black tea liquor, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 335 (1–3), 148–53, 2009.
  • Kawakatsu T., Kobayashi T., Sano Y., Nakajima M., Clarification of Green Tea Extract by Microfiltration and Ultrafiltration, Bioscience, Biotechnology, and Biochemistry, 59:6, 1016-1020, 1995.
  • Chandini S.K., Rao L.J., Subramanian R., Membrane Clarification of Black Tea Extracts, Food and Bioprocess Technology, 6 (8), 1926–43, 2013.
  • Zhang T., Huang W., Jia T., Liu Y., Yao S., Ionic liquid@β-cyclodextrin-gelatin composite membrane for effective separation of tea polyphenols from green tea, Food Chemistry, 333 (April), 127534, 2020.
  • Sousa L. dos S., Cabral B.V., Madrona G.S., Cardoso V.L., Reis M.H.M., Purification of polyphenols from green tea leaves by ultrasound assisted ultrafiltration process, Separation and Purification Technology, 168 188–98, 2016.
  • Li J., Liao H., Sun Y., Li R., Zhu B., Zhong Z., Yao Z., Fabrication of MWCNTs/PDMS mixed matrix membranes for recovery of volatile aromatic compounds from brewed black tea, Separation and Purification Technology, 259 (July 2020), 118101, 2020.
  • Chen B., Xiong X., Yao Z., Yin N., Low Z.X., Zhong Z., Integrated membrane process for wastewater treatment from production of instant tea powders, Desalination, 355 147–54, 2015.
  • Saha S., Boro R., Das C., Treatment of tea industry wastewater using coagulation-spinning basket membrane ultrafiltration hybrid system, Journal of Environmental Management, 244 (April), 180–8, 2019.
  • Van Mil, P.J.J.M., Bouman, S.R., Freeze concentration of dairy products, Netherlands Milk and Dairy Journal, 44, 21-31, 1990.
  • Van Pelt, W.H.M., Bassoli, D.G., Freeze concentration: coffee-product and economic analysis, Cafe Cacao The, 34(1), 37-45, 1990.
  • Pan Z., Song C., Li L., Wang H., Pan Y., Wang C., Li J., Wang T., Feng X., Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: Recent advances and future prospects, Chemical Engineering Journal, 376 (November), 1–19, 2019.
There are 158 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Cemre Çelikten 0000-0003-4996-7645

Rukiye Mavuş 0000-0003-2918-4491

Sevgi Kemeç 0000-0002-3938-7316

Ümran Ünlü This is me 0000-0003-4700-5004

Ayça Ergün 0000-0003-3183-3729

Hüseyin Deligöz 0000-0002-0915-2911

Project Number 3200785 ve 1180083
Publication Date February 28, 2022
Submission Date February 16, 2021
Acceptance Date October 16, 2021
Published in Issue Year 2022 Volume: 37 Issue: 3

Cite

APA Çelikten, C., Mavuş, R., Kemeç, S., Ünlü, Ü., et al. (2022). Gıda ve içecek endüstrisinde membran teknolojileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(3), 1713-1734. https://doi.org/10.17341/gazimmfd.881087
AMA Çelikten C, Mavuş R, Kemeç S, Ünlü Ü, Ergün A, Deligöz H. Gıda ve içecek endüstrisinde membran teknolojileri. GUMMFD. February 2022;37(3):1713-1734. doi:10.17341/gazimmfd.881087
Chicago Çelikten, Cemre, Rukiye Mavuş, Sevgi Kemeç, Ümran Ünlü, Ayça Ergün, and Hüseyin Deligöz. “Gıda Ve içecek endüstrisinde Membran Teknolojileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no. 3 (February 2022): 1713-34. https://doi.org/10.17341/gazimmfd.881087.
EndNote Çelikten C, Mavuş R, Kemeç S, Ünlü Ü, Ergün A, Deligöz H (February 1, 2022) Gıda ve içecek endüstrisinde membran teknolojileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 3 1713–1734.
IEEE C. Çelikten, R. Mavuş, S. Kemeç, Ü. Ünlü, A. Ergün, and H. Deligöz, “Gıda ve içecek endüstrisinde membran teknolojileri”, GUMMFD, vol. 37, no. 3, pp. 1713–1734, 2022, doi: 10.17341/gazimmfd.881087.
ISNAD Çelikten, Cemre et al. “Gıda Ve içecek endüstrisinde Membran Teknolojileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/3 (February 2022), 1713-1734. https://doi.org/10.17341/gazimmfd.881087.
JAMA Çelikten C, Mavuş R, Kemeç S, Ünlü Ü, Ergün A, Deligöz H. Gıda ve içecek endüstrisinde membran teknolojileri. GUMMFD. 2022;37:1713–1734.
MLA Çelikten, Cemre et al. “Gıda Ve içecek endüstrisinde Membran Teknolojileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 37, no. 3, 2022, pp. 1713-34, doi:10.17341/gazimmfd.881087.
Vancouver Çelikten C, Mavuş R, Kemeç S, Ünlü Ü, Ergün A, Deligöz H. Gıda ve içecek endüstrisinde membran teknolojileri. GUMMFD. 2022;37(3):1713-34.