Research Article
BibTex RIS Cite

Rezonans dönüştürücülü hidrojen üretim sisteminin gerçekleştirilmesi

Year 2022, Volume: 37 Issue: 4, 2163 - 2176, 28.02.2022
https://doi.org/10.17341/gazimmfd.943982

Abstract

Bu çalışmada darbe genişlik modülasyonlu (PWM) anahtarlamanın yüksek anahtarlama frekanslarında çalışmaya getirmiş olduğu sınırlandırmaları azaltabilmek için rezonans dönüştürücü beslemeli alkali elektrolizör ile hidrojen üretim sistemi gerçekleştirilmiştir. Sistemin güç katında basit yapısı ve azalan çıkış akımı ile iletim ve anahtarlama kayıplarının azalmasından dolayı seri rezonans dönüştürücü (SRC) kullanılmıştır. SRC’nin rezonans frekansı üstü çalışma durumu için durum-düzlem yöntemi ile kararlı-durum karakteristiği elde edilmiştir. 400 W’lik dönüştürücünün tasarımı gerçekleştirilmiştir. Dönüştürücü, kontrol devresi ve alkali elektrolizörden oluşan sistem kurulmuştur. Dönüştürücünün güç anahtarları frekans modülasyon (FM) tekniği ile sürülmüş ve sıfır gerilim şartlarında iletime geçirilmiştir. PWM dönüştürücülerin aksine anahtar streslerini azaltmak için snubber devrelerinin kullanılmasına gerek kalmadığı gibi daha yüksek frekanslarda çalışarak daha yüksek verim elde edilmiştir. Elektrolizörün nominal çalışma akımı ve farklı elektrolit sıcaklıkları için üretilen hidrojen miktarları teorik olarak hesaplanmış ve yaklaşık olarak ölçülmüştür. Nominal çalışma akımı ve 50 °C elektrolit sıcaklığı için 66,6 L/h hidrojen üretilmiştir. Elektrolizör enerji, Faraday ve hücre veriminin sıra ile %80,05, %74,47 ve %59,61 olduğu gözlemlenmiştir.

Supporting Institution

Karabük Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Birimi

Project Number

KBUBAP-17-DR-264

Thanks

Bu çalışma Karabük Üniversitesi Rektörlüğü Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir. (Proje Numarası: KBUBAP-17-DR-264).

References

  • 1. Yodwong, B., Guilbert, D., Phattanasak, M., Kaewmanee, W., Hinaje, M. and Vitale, G., Proton exchange membrane electrolyzer modelling for power electronics control: a short review, Journal of Carbon Research, 6 (2), 1-20, 2020.
  • 2. Jiang, W., Wu, Y. K., Yang, T., Yu, F. Y., Wang, W. and Hashimoto, S., Identification and power electronic module design of a solar powered hydrogen electrolyzer, Power and Energy Engineering Conference (APPEEC), Asia-Pacific, 1-4, 27-29 March, 2012.
  • 3. Şahin, M. E., Okumuş, H. İ. and Aydemir, M. T., Implementation of an electrolysis system with DC/DC synchronous buck converter, Int. J. Hydrogen Energy, 39 (13), 6802-6812, 2014.
  • 4. Valverde, R. G., Miguel, C., Bejar, R. M. and Urbina, A., Optimized photovoltaic generator-water electrolyser coupling through a controlled DC-DC converter, Int. J. Hydrogen Energy, 33 (20), 5352-5362 2008.
  • 5. Dahbi, S., Aboutni, R., Aziz, A., Benazzi, N., Elhafyani, M. and Kassmi, K., Optimised hydrogen production by a photovoltaic electrolysis system DC/DC converter and water flow controller, Int. J. Hydrogen Energy, 41 (45), 1-9, 2016.
  • 6. Koiwa, K., Umemura, A., Takahashi, R. and Tamura, J., Stand-alone hydrogen production system composed of wind generators and electrolyzer, Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE, Vienna-Austria, 1873-1878, 10-13 November, 2013.
  • 7. Ursua, A., San Martin, I. and Sanchis, P., Design of a programmable power supply to study the performance of an alkaline electrolyzer under different operating conditions, 2012 IEEE International Energy Conference and Exhibition, Florence-Italy, 259-264, 9-12 September, 2012.
  • 8. Vinnikov, D., Hoimoja, H., Andrijanovits, A., Roasto, I., Lehtla, T. and Klytta, M., An improved interface converter for a medium-power wind-hydrogen system, International Conference on Clean Electrical Power, Capri-Italy, 426-432, 9-11 June, 2009.
  • 9. Garrigos, A., Lizan, J. L., Blanes, J. M. and Gutierrez, R. A., Combined maximum power point tracking and output current control for a photovoltaic-electrolyzer DC/DC converter, Int. J. Hydrogen Energy, 39 (36), 20907-20919, 2014.
  • 10. Garrigos, A., Blanes, J. M., Carrasco, J. A., Lizan, J. L., Beneito, R. and Molina, J. A., 5 kW DC/DC converter for hydrogen generation from photovoltaic sources, Int. J. Hydrogen Energy, 35 (12), 6123-6130, 2010.
  • 11. Török, L., Nielsen, C. K., Munk-Nielsen, S., Romer, C. and Flindt, P., High-efficiency electrolyzer power supply for household hydrogen production and storage systems, 17th European Conference on Power Electronics and Applications, Geneva- Switzerland, 1-9, 8-10 September, 2015.
  • 12. Nacar, S. and Öncü, S. Hydrogen production system with fuzzy logic-controled converter, Turk J Elec Eng & Comp Sci, 27 (2019), 1885-1895, 2019.
  • 13. Gautam, D. S. and Bhat, A. K. S., A comparison of soft-switched DC-to-DC converters for electrolyzer application, IEEE Trans. Power Electron., 28 (1), 54-63, 2012.
  • 14. Scheible, G., Solmecke, H. and Hackstein, D., Low cost soft switching DC-DC converter with autotransformer for photovoltaic hydrogen systems, 23rd International Conference on Industrial Electronics, Control and Instrument, New Orleans-USA, 780-785, 14 November, 1997.
  • 15. Joshi, T. G. S. and John, V., Circuit-parameter-based audiosusceptibility model for series resonant converter, IEEE Trans. Power Electron., 34 (6), 5927-5939, 2019.
  • 16. Jia, P. and Yuan, Y., Analysis and implementation of LC series resonant converter with secondary side clamp diodes under DCM operation for high step-up applications, J. Power Electron., 19 (2), 363-379 2019.
  • 17. Stolten, D., Hydrogen production: by electrolysis, Editor: Godula-Jopek, A., Wiley-VCH Verlag GmbH & Co., Weinheim, Germany, 2015.
  • 18. Buttler, A. and Spliethoff, H., Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review, Renewable Sustainable Energy Rev., 82 (2018), 2440-2454, 2018.
  • 19. Chi, J. and Yu, H., Water electrolysis based on renewable energy for hydrogen production, Chin. J. Catal., 39 (2018), 390-394, 2018.
  • 20. Carmo, M., Fritz, D. L., Mergel, J. and Stolten, D., A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38 (2013), 4901-4934, 2013.
  • 21. Kim, E. H. and Kwon, B. H., Zero-voltage and zero-current-switching full-bridge converter with secondary resonance, IEEE Trans. Ind. Electron., 57 (3), 1017-1025, 2010.
  • 22. Barbi, I. and Pöttker, F., Series resonant converter operating above the resonant frequency, Soft Commutation Isolated DC-DC Converters, Springer, Switzerland, 115-138, 2019.
  • 23. Witulski, A. F. and Erickson, R. W., Design of the series resonant converter for minimum component stress, IEEE Trans. Aerosp. Electron. Syst., 22 (4), 356-363, 1985. 24. David, M., Ocampo-Martinez, C. and Sanchez-Pena, R., Advances in alkaline water electrolyzers: A review, J. Energy Storage, 23 (2019), 392-403, 2019.
  • 25. Ulleberg, Ø., Modelling of advanced alkaline electrolyzers: a system simulation approach, Int. J. Hydrogen Energy, 28 (1), 21-33, 2003.
  • 26. Kumar, S. S. and Himabindu, V., Hydrogen production by PEM water electrolysis – a review, Mater. Sci. Energy Technol., 2 (2019), 442-454, 2019.
  • 27. Buttler, A. and Spliethoff, H., Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review, Renewable Sustainable Energy Rev., 82 (2018), 2440-2454, 2018.
  • 28. Philips, R. and Dunnill, C. W., Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas, R. Soc. Chem., 6 (102), 100643-100651, 2016.
  • 29. Zeng, K. and Zhang, D., Recent progress in alkaline water electrolysis for hydrogen production and applications”, Prog. Energy Combust. Sci., 36 (2010), 307-326, 2010.
  • 30. Teng, Y., Wang, Z., Li, Y., Ma, Q., Hui, Q. and Li, S., Multi-energy storage system model based on electricity heat and hydrogen coordinated optimization for power grid flexibility, CSEE J. Power Energy Syst, 5 (2), 266-274, 2019.
  • 31. David, M., Ocampo-Martinez, C. and Sanchez-Pena, R., Advances in alkaline water electrolyzers: a review”, J. Storage Mater., 23 (2019), 392-403, 2019.
  • 32. Buttler, A. and Spliethoff, H., Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review, Renewable Sustainable Energy Rev., 82 (2018), 2440-2454, 2018.
  • 33. Rashid, M. M., Mesfer, M. K. A., Naseem, H. and Danish, M., Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis, Int. j. eng., 4 (3), 80-93, 2015.
Year 2022, Volume: 37 Issue: 4, 2163 - 2176, 28.02.2022
https://doi.org/10.17341/gazimmfd.943982

Abstract

Project Number

KBUBAP-17-DR-264

References

  • 1. Yodwong, B., Guilbert, D., Phattanasak, M., Kaewmanee, W., Hinaje, M. and Vitale, G., Proton exchange membrane electrolyzer modelling for power electronics control: a short review, Journal of Carbon Research, 6 (2), 1-20, 2020.
  • 2. Jiang, W., Wu, Y. K., Yang, T., Yu, F. Y., Wang, W. and Hashimoto, S., Identification and power electronic module design of a solar powered hydrogen electrolyzer, Power and Energy Engineering Conference (APPEEC), Asia-Pacific, 1-4, 27-29 March, 2012.
  • 3. Şahin, M. E., Okumuş, H. İ. and Aydemir, M. T., Implementation of an electrolysis system with DC/DC synchronous buck converter, Int. J. Hydrogen Energy, 39 (13), 6802-6812, 2014.
  • 4. Valverde, R. G., Miguel, C., Bejar, R. M. and Urbina, A., Optimized photovoltaic generator-water electrolyser coupling through a controlled DC-DC converter, Int. J. Hydrogen Energy, 33 (20), 5352-5362 2008.
  • 5. Dahbi, S., Aboutni, R., Aziz, A., Benazzi, N., Elhafyani, M. and Kassmi, K., Optimised hydrogen production by a photovoltaic electrolysis system DC/DC converter and water flow controller, Int. J. Hydrogen Energy, 41 (45), 1-9, 2016.
  • 6. Koiwa, K., Umemura, A., Takahashi, R. and Tamura, J., Stand-alone hydrogen production system composed of wind generators and electrolyzer, Industrial Electronics Society, IECON 2013 - 39th Annual Conference of the IEEE, Vienna-Austria, 1873-1878, 10-13 November, 2013.
  • 7. Ursua, A., San Martin, I. and Sanchis, P., Design of a programmable power supply to study the performance of an alkaline electrolyzer under different operating conditions, 2012 IEEE International Energy Conference and Exhibition, Florence-Italy, 259-264, 9-12 September, 2012.
  • 8. Vinnikov, D., Hoimoja, H., Andrijanovits, A., Roasto, I., Lehtla, T. and Klytta, M., An improved interface converter for a medium-power wind-hydrogen system, International Conference on Clean Electrical Power, Capri-Italy, 426-432, 9-11 June, 2009.
  • 9. Garrigos, A., Lizan, J. L., Blanes, J. M. and Gutierrez, R. A., Combined maximum power point tracking and output current control for a photovoltaic-electrolyzer DC/DC converter, Int. J. Hydrogen Energy, 39 (36), 20907-20919, 2014.
  • 10. Garrigos, A., Blanes, J. M., Carrasco, J. A., Lizan, J. L., Beneito, R. and Molina, J. A., 5 kW DC/DC converter for hydrogen generation from photovoltaic sources, Int. J. Hydrogen Energy, 35 (12), 6123-6130, 2010.
  • 11. Török, L., Nielsen, C. K., Munk-Nielsen, S., Romer, C. and Flindt, P., High-efficiency electrolyzer power supply for household hydrogen production and storage systems, 17th European Conference on Power Electronics and Applications, Geneva- Switzerland, 1-9, 8-10 September, 2015.
  • 12. Nacar, S. and Öncü, S. Hydrogen production system with fuzzy logic-controled converter, Turk J Elec Eng & Comp Sci, 27 (2019), 1885-1895, 2019.
  • 13. Gautam, D. S. and Bhat, A. K. S., A comparison of soft-switched DC-to-DC converters for electrolyzer application, IEEE Trans. Power Electron., 28 (1), 54-63, 2012.
  • 14. Scheible, G., Solmecke, H. and Hackstein, D., Low cost soft switching DC-DC converter with autotransformer for photovoltaic hydrogen systems, 23rd International Conference on Industrial Electronics, Control and Instrument, New Orleans-USA, 780-785, 14 November, 1997.
  • 15. Joshi, T. G. S. and John, V., Circuit-parameter-based audiosusceptibility model for series resonant converter, IEEE Trans. Power Electron., 34 (6), 5927-5939, 2019.
  • 16. Jia, P. and Yuan, Y., Analysis and implementation of LC series resonant converter with secondary side clamp diodes under DCM operation for high step-up applications, J. Power Electron., 19 (2), 363-379 2019.
  • 17. Stolten, D., Hydrogen production: by electrolysis, Editor: Godula-Jopek, A., Wiley-VCH Verlag GmbH & Co., Weinheim, Germany, 2015.
  • 18. Buttler, A. and Spliethoff, H., Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review, Renewable Sustainable Energy Rev., 82 (2018), 2440-2454, 2018.
  • 19. Chi, J. and Yu, H., Water electrolysis based on renewable energy for hydrogen production, Chin. J. Catal., 39 (2018), 390-394, 2018.
  • 20. Carmo, M., Fritz, D. L., Mergel, J. and Stolten, D., A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38 (2013), 4901-4934, 2013.
  • 21. Kim, E. H. and Kwon, B. H., Zero-voltage and zero-current-switching full-bridge converter with secondary resonance, IEEE Trans. Ind. Electron., 57 (3), 1017-1025, 2010.
  • 22. Barbi, I. and Pöttker, F., Series resonant converter operating above the resonant frequency, Soft Commutation Isolated DC-DC Converters, Springer, Switzerland, 115-138, 2019.
  • 23. Witulski, A. F. and Erickson, R. W., Design of the series resonant converter for minimum component stress, IEEE Trans. Aerosp. Electron. Syst., 22 (4), 356-363, 1985. 24. David, M., Ocampo-Martinez, C. and Sanchez-Pena, R., Advances in alkaline water electrolyzers: A review, J. Energy Storage, 23 (2019), 392-403, 2019.
  • 25. Ulleberg, Ø., Modelling of advanced alkaline electrolyzers: a system simulation approach, Int. J. Hydrogen Energy, 28 (1), 21-33, 2003.
  • 26. Kumar, S. S. and Himabindu, V., Hydrogen production by PEM water electrolysis – a review, Mater. Sci. Energy Technol., 2 (2019), 442-454, 2019.
  • 27. Buttler, A. and Spliethoff, H., Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review, Renewable Sustainable Energy Rev., 82 (2018), 2440-2454, 2018.
  • 28. Philips, R. and Dunnill, C. W., Zero gap alkaline electrolysis cell design for renewable energy storage as hydrogen gas, R. Soc. Chem., 6 (102), 100643-100651, 2016.
  • 29. Zeng, K. and Zhang, D., Recent progress in alkaline water electrolysis for hydrogen production and applications”, Prog. Energy Combust. Sci., 36 (2010), 307-326, 2010.
  • 30. Teng, Y., Wang, Z., Li, Y., Ma, Q., Hui, Q. and Li, S., Multi-energy storage system model based on electricity heat and hydrogen coordinated optimization for power grid flexibility, CSEE J. Power Energy Syst, 5 (2), 266-274, 2019.
  • 31. David, M., Ocampo-Martinez, C. and Sanchez-Pena, R., Advances in alkaline water electrolyzers: a review”, J. Storage Mater., 23 (2019), 392-403, 2019.
  • 32. Buttler, A. and Spliethoff, H., Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review, Renewable Sustainable Energy Rev., 82 (2018), 2440-2454, 2018.
  • 33. Rashid, M. M., Mesfer, M. K. A., Naseem, H. and Danish, M., Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis, Int. j. eng., 4 (3), 80-93, 2015.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Salih Nacar 0000-0003-4843-9648

Selim Öncü 0000-0001-6432-0634

Project Number KBUBAP-17-DR-264
Publication Date February 28, 2022
Submission Date May 27, 2021
Acceptance Date December 4, 2021
Published in Issue Year 2022 Volume: 37 Issue: 4

Cite

APA Nacar, S., & Öncü, S. (2022). Rezonans dönüştürücülü hidrojen üretim sisteminin gerçekleştirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(4), 2163-2176. https://doi.org/10.17341/gazimmfd.943982
AMA Nacar S, Öncü S. Rezonans dönüştürücülü hidrojen üretim sisteminin gerçekleştirilmesi. GUMMFD. February 2022;37(4):2163-2176. doi:10.17341/gazimmfd.943982
Chicago Nacar, Salih, and Selim Öncü. “Rezonans dönüştürücülü Hidrojen üretim Sisteminin gerçekleştirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no. 4 (February 2022): 2163-76. https://doi.org/10.17341/gazimmfd.943982.
EndNote Nacar S, Öncü S (February 1, 2022) Rezonans dönüştürücülü hidrojen üretim sisteminin gerçekleştirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 4 2163–2176.
IEEE S. Nacar and S. Öncü, “Rezonans dönüştürücülü hidrojen üretim sisteminin gerçekleştirilmesi”, GUMMFD, vol. 37, no. 4, pp. 2163–2176, 2022, doi: 10.17341/gazimmfd.943982.
ISNAD Nacar, Salih - Öncü, Selim. “Rezonans dönüştürücülü Hidrojen üretim Sisteminin gerçekleştirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/4 (February 2022), 2163-2176. https://doi.org/10.17341/gazimmfd.943982.
JAMA Nacar S, Öncü S. Rezonans dönüştürücülü hidrojen üretim sisteminin gerçekleştirilmesi. GUMMFD. 2022;37:2163–2176.
MLA Nacar, Salih and Selim Öncü. “Rezonans dönüştürücülü Hidrojen üretim Sisteminin gerçekleştirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 37, no. 4, 2022, pp. 2163-76, doi:10.17341/gazimmfd.943982.
Vancouver Nacar S, Öncü S. Rezonans dönüştürücülü hidrojen üretim sisteminin gerçekleştirilmesi. GUMMFD. 2022;37(4):2163-76.