Araştırma Makalesi
BibTex RIS Kaynak Göster

Dizel-biyodizel karışımına karbon nanotüp katkısının motor performansı ve egzoz emisyonlarına etkisinin incelenmesi

Yıl 2023, Cilt: 38 Sayı: 2, 1055 - 1064, 07.10.2022
https://doi.org/10.17341/gazimmfd.741177

Öz

Çevresel kirlenmenin yol açtığı endişelerin giderek artması, içten yanmalı motorlarda daha temiz ve yenilenebilir yakıtların kullanımını arttırmıştır. Biyodizel pek çok ülkede dizel motorlarda alternatif yakıt olarak kullanılmaktadır. Bununla birlikte, dizel yakıtı ile karşılaştırıldığında biyodizelin yüksek viskozitesi ve buna bağlı olarak daha kötü atomizasyon karakteristiği kullanım alanının sınırlı kalmasına neden olmaktadır. Biyodizelin bu özelliklerinin iyileştirilebilmesi amacıyla çeşitli katkı maddeleri kullanımı üzerine araştırmalar gerçekleştirilmiştir. Bu çalışmada, karbon nanotüp katkı maddesinin, biyodizel-dizel yakıtı ile çalışan tek silindirli direkt enjeksiyonlu bir dizel motorunda performans ve emisyon karakteristiklerine etkileri incelenmiştir. Tam yükte motor hızına bağlı olarak gerçekleştirilen deneylerde, termik verim, motor gücü ve torku ile egzoz emisyonları incelenmiştir. Maksimum tork devrinde silindir içi basınç ve ısı dağılım oranı da analiz edilmiştir. Karbon nanotüp katkı maddesinin yanma başlangıcını öne aldığı ve termik verimi iyileştirdiği belirlenmiştir. Maksimum termik verim 100 ppm karbon nanotüp katkısı kullanıldığında %39,3 olarak elde edilmiştir. Karbon nanotüp katkı maddesinin CO, HC ve is emisyonlarını azalttığı ancak motor performansının iyileşmesine bağlı olarak NOx emisyonlarını arttırdığı belirlenmiştir. 100 ppm karbon nanotüp katkısının NOx emisyonlarını yaklaşık %11 arttırdığı, buna karşın CO, HC ve is emisyonları %20, %26 ve %7,9 oranında azalttığı tespit edilmiştir.

Destekleyen Kurum

Gazi Üniversitesi

Proje Numarası

07/2019-14

Teşekkür

Bu çalışma Gazi Üniversitesi Bilimsel Araştırma Projeleri (BAP) tarafından desteklenen 07/2019-14 numaralı projenin katkılarıyla gerçekleştirilmiştir. Yazarlar olarak Gazi Üniversitesi’ne katkılarından dolayı teşekkür ederiz.

Kaynakça

  • Referans1 Yılmaz, E, Polat, S, Solmaz, H, Aksoy, F, Çınar, C. (2019). Thermodynamic comparison of crank-drive and rhombic-drive mechanisms for a single cylinder spark ignition engine. Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 595-606. https://doi.org/10.17341/gazimmfd.492003.
  • Referans2 Zhu, M, Ma, Y, Zhang, D. (2012). Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine. Appl. Energy, 91, 166–172. http://dx.doi.org/ 10.1016/j.apenergy.2011.09.007.
  • Referans3 Solmaz, H, Yamık, H, Uyumaz, A, Polat, S, Yılmaz, E. (2016). Direkt enjeksiyonlu bir dizel motorunda dizel ve jet-A1 yakıt karışımlarının yanma, motor performansı ve egzoz emisyonlarına etkileri üzerine deneysel bir çalışma. Isı Bilimi ve Tekniği Dergisi, 36 (2), 51-60.
  • Referans4 Çelik, M, Solmaz, H, Yücesu, HS, Yılmaz, E. (2016). Kanola Metil Esterine N-Heptan Katkısının Motor Performansı ve Yanma Karakteristiklerine Etkilerinin İncelenmesi. Isı Bilimi ve Tekniği Dergisi, 36 (1), 9-16.
  • Referans5 Halis, S, Nacak, Ç, Solmaz, H, Yılmaz, E, Yücesu, HS. (2018). HCCI bir motorda oktan sayısının yanma karakteristikleri ve motor performansı üzerine etkilerinin incelenmesi. Isi Bilimi ve Teknigi Dergisi/Journal of Thermal Science & Technology, 38 (2).
  • Referans6 Solmaz, H, Ardebili, SMS, Aksoy, F, Calam, A, Yılmaz, E, Arslan, M. (2020). Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method. Energy, 117377.
  • Referans7 Calam, TT. (2020). 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 835-844. https://doi.org/10.17341/gazimmfd.543608.
  • Referans8 Ardebili, SMS, Taghipoor, A, Solmaz, H, Mostafaei, M. (2020). The effect of nano-biochar on the performance and emissions of a diesel engine fueled with fusel oil-diesel fuel. Fuel, 268, 117356.
  • Referans9 Ardebili, SMS. (2020). Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran. Renewable Energy.
  • Referans10 Yari, N, Mostafaei, M, Naderloo, L, Safieddin Ardebili, SM. (2019). Energy indicators for microwave-assisted biodiesel production from waste fish oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-12.
  • Referans11 Vicente, G, Martinez, M, Aracil, J. (2006). A comparative study of vegetable oils for biodiesel production in Spain. Energy Fuels. 20, 394–398.
  • Referans12 Khedri, B, Mostafaei, M, Ardebili, SMS. (2019). A review on microwave-assisted biodiesel production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(19), 2377-2395.
  • Referans13 Khedri, B, Mostafaei, M, Ardebili, SMS. (2019). Flow-mode synthesis of biodiesel under simultaneous microwave–magnetic irradiation. Chinese Journal of Chemical Engineering, 27(10), 2551-2559.
  • Referans14 Kannan, GR, Karvembu, R, Anand, R. (2011). Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel. Applied Energy. 88, 3694-3703.
  • Referans15 Leung, DYC, Guo, Y. (2006). Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Process Technol., 87, 883–890.
  • Referans16 Dorado, MP, Ballesteros, E, Mittelbach, M, Lopez, FJ. (2004). Kinetic parameters affecting the alkali-catalyzed transesterification process of used olive oil. Energy Fuels, 18 (5), 1457–1462.
  • Referans17 Cvengros, ZC. (2004). Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids. Biomass Bioenergy, 27, 173–181.
  • Referans18 Issariyakul, T, Kulkarni, MG, Dalai, AK, Bakhsh, NN. (2007). Production of biodiesel from waste fryer grease using mixed methanol/ethanol system. Fuel Process Technol., 88, 429–436.
  • Referans19 Sinha, S, Agarwal, AK, Garg, S. (2009). Biodiesel development from rice bran oil: transesterification process optimization and fuel characterization. Energy Convers Manage., 49, 1248–1257.
  • Referans20 Vicente, G, Martinez, M, Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogenous catalysts systems. Bioresour Technol., 92, 297–305.
  • Referans21 Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic super critical methanol transesterification methods. Prog Energy Combust., 31, 466–487.
  • Referans22 Sharma, YC, Singh, B. (2009). Development of biodiesel: current scenario. Renew Sustain Energy Rev., 13, 1646–1651.
  • Referans23 Jiaqiang, E, Pham, M, Zhao, D, Deng, Y, Le, D, Zuo, W, Zhang, Z. (2017). Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. Renewable and Sustainable Energy Reviews, 80, 620-647.
  • Referans24 Shahir, SA, Masjuki, HH, Kalam, MA, Imran, A, Ashraful, AM. (2015). Performance and emission assessment of diesel–biodiesel–ethanol/bioethanol blend as a fuel in diesel engines: A review. Renewable and Sustainable Energy Reviews, 48, 62-78.
  • Referans25 Valente, OS, Pasa, VMD, Belchior, CRP, Sodré, JR. (2011). Physical–chemical properties of waste cooking oil biodiesel and castor oil biodiesel blends. Fuel, 90 (4), 1700-1702.
  • Referans26 Moser, BR, Vaughn, SF. (2010). Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresource Technology, 101 (2), 646-653.
  • Referans27 Ramadhas, AS, Jayaraj, S, Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84 (4), 335-340.
  • Referans28 Gülüm, M, Bilgin, A. (2015). Density, flash point and heating value variations of corn oil biodiesel–diesel fuel blends. Fuel Processing Technology, 134, 456-464.
  • Referans29 Thangaraja, J, Anand, K, Mehta, PS. (2016). Biodiesel NOx penalty and control measures-a review. Renewable and Sustainable Energy Reviews, 61, 1-24.
  • Referans30 Giakoumis, EG, Sarakatsanis, CK. (2018). Estimation of biodiesel cetane number, density, kinematic viscosity and heating values from its fatty acid weight composition. Fuel, 222, 574-585.
  • Referans31 Jiaqiang, E, Liu, G, Zhang, Z, Han, D, Chen, J, Wei, K, Yin, Z. (2019). Effect analysis on cold starting performance enhancement of a diesel engine fueled with biodiesel fuel based on an improved thermodynamic model. Applied energy, 243, 321-335.
  • Referans32 Muthusamy, S, Nallathambi, SS, kumar Ramasamy, R, Mohamed, ST. (2018). Effects of nanoparticles blended biodiesel on single cylinder CI engine. Materials Today: Proceedings, 5 (2), 6831-6838.
  • Referans33 El-Seesy, AI, Abdel-Rahman, AK, Bady, M, Ookawara, SJEC. (2017). Performance, combustion, and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives. Energy Conversion and Management, 135, 373-393.
  • Referans34 Pirouzfar, V, Zarringhalam Moghaddam, A, Mirza, B. (2012). Physicochemical properties and combustion performance of gas oil–fuel additives. Journal of energy resources technology, 134 (4), 041101.
  • Referans35 Saxena, V, Kumar, N, Saxena, VK. (2017). A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine. Renewable and Sustainable Energy Reviews, 70, 563-588.
  • Referans36 Basha, JS, Anand, RB. (2014). Performance, emission and combustion characteristics of a diesel engine using Carbon Nanotubes blended Jatropha Methyl Ester Emulsions. Alex. Eng. J., 53, 259-273, http://dx.doi.org/ 10.1016/j.aej.2014.04.001.
  • Referans37 Tyagi, H, Phelan, PE, Prasher, R, Peck, R, Lee, T, Pacheco, JR, Arentzen, P. (2008). Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. Nano letters, 8 (5), 1410-1416.
  • Referans38 Seffati, K, Honarvar, B, Esmaeili, H, Esfandiari, N. (2019). Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties. Fuel, 235, 1238-1244.
  • Referans39 Wen, L, Wang, Y, Lu, D, Hu, S, Han, H. (2010). Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel, 89 (9), 2267-2271.
  • Referans40 Yetter, RA, Risha, GA, Son, SF. (2009). Metal particle combustion and nanotechnology. Proceedings of the Combustion Institute, 32 (2), 1819-1838.
  • Referans41 Dreizin, EL. (2000). Phase changes in metal combustion. Progress in Energy and Combustion Science, 26 (1), 57-78.
  • Referans42 Sabourin, JL, Dabbs, DM, Yetter, RA, Dryer, FL, Aksay, IA. (2009). Functionalized graphene sheet colloids for enhanced fuel/propellant combustion. ACS nano, 3 (12), 3945-3954.
  • Referans43 Roos, JW, Richardson, D, Claydon, DJ. (2008). U.S. Patent Application No. 11/533,200.
  • Referans44 Scattergood, R. (2006). U.S. Patent Application No. 10/542,770.
  • Referans45 Farfaletti, A, Astorga, C, Martini, G, Manfredi, U, Mueller, A, Rey, M, Larsen, BR. (2005). Effect of water/fuel emulsions and a cerium-based combustion improver additive on HD and LD diesel exhaust emissions. Environmental science & technology, 39 (17), 6792-6799.
  • Referans46 Moy, D, Niu, C, Tennent, H, Hoch, R. (2002). U.S. Patent No. 6,419,717. Washington, DC: U.S. Patent and Trademark Office.
  • Referans47 Basha, JS, Anand, RB. (2011). An experimental investigation in a diesel engine using carbon nanotubes blended water–diesel emulsion fuel. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225 (3), 279-288.
  • Referans48 Basha, JS, Anand, RB. (2011). An experimental study in a CI engine using nanoadditive blended water–diesel emulsion fuel. International journal of green energy, 8 (3), 332-348.
  • Referans49 Basha, JS, Anand, RB. (2011). Role of nanoadditive blended biodiesel emulsion fuel on the working characteristics of a diesel engine. Journal of Renewable and Sustainable energy, 3 (2), 023106.
  • Referans50 Basha, JS, Anand, RB. (2010). Effects of nanoparticle-blended water biodiesel emulsion fuel on working characteristics of a diesel engine. International Journal of Global Warming, 2 (4), 330-346.
  • Referans51 Sajith, V, Sobhan, CB, Peterson, GP. (2010). Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Advances in Mechanical Engineering, 2, 581407.
  • Referans52 Ghafoori, M, Ghobadian, B, Najafi, G, Layeghi, M, Rashidi, A, Mamat, R. (2015). Effect of nano-particles on the performance and emission of a diesel engine using biodiesel-diesel blend. International Journal of Automotive & Mechanical Engineering, 12.
  • Referans53 Mirzajanzadeh, M., Tabatabaei, M., Ardjmand, M., Rashidi, A., Ghobadian, B., Barkhi, M., & Pazouki, M. (2015). A novel soluble nano-catalysts in diesel–biodiesel fuel blends to improve diesel engines performance and reduce exhaust emissions. Fuel, 139, 374-382.
  • Referans54 Tewari, P, Doijode, E, Banapurmath, NR, Yaliwal, VS. (2013). Experimental investigations on a diesel engine fuelled with multiwalled carbon nanotubes blended biodiesel fuels. International Journal of Emerging Technology and Advanced Engineering, 3 (3), 72-76.
  • Referans55 Ichinose, N, Ozaki, Y, Kashii, S. (1992). Superfine Particle Technology. Springer-Verlag London Limited.
  • Referans56 Selvan, VAM, Anand, RB, Udayakumar M. (2014). Effect of Cerium Oxide Nanoparticles and Carbon Nanotubes as fuel-borne additives in Diesterol blends on the performance, combustion and emission characteristics of a variable compression ratio engine. Fuel, 130: 160-167. http://doi.org/10.1016/j.fuel.2014.04.034.
  • Referans57 Hosseini, SH, Taghizadeh-Alisaraei, A, Ghobadian, B, Abbaszadeh-Mayvan, A. (2017). Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine. Energy, 124 543-552. http://dx.doi.org/10.1016/j.energy.2017.02.109.
  • Referans58 Hosseini, SH, Taghizadeh-Alisaraei, A, Ghobadian, B, Abbaszadeh-Mayvan, A. (2017). Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends. Renewable Energy, 111, 201-213.
  • Referans59 Payri, F, Bermudez, VR, Tormos, B, Linares, WG. (2009). Hydrocarbon emissions speciation in diesel and biodiesel exhausts. Atmospheric Environment, 43: 1273-1279.
  • Referans60 Heydari-maleney, K, Taghizadeh-alisaraei, A, Ghobadian, B, Abbaszadeh-Mayvan, A. (2017). Analyzing and evaluation of carbon nanotubes additives to diesohol-B2 fuels on performance and emission of diesel engines. Fuel, 196: 110-123. http://dx.doi.org/10.1016/j.fuel.2017.01.091.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Elif Sürer 0000-0002-2255-7200

Hamit Solmaz 0000-0003-0689-6824

Emre Yılmaz 0000-0002-5653-2079

Alper Calam 0000-0003-4125-2127

Duygu İpci 0000-0002-8862-7662

Proje Numarası 07/2019-14
Yayımlanma Tarihi 7 Ekim 2022
Gönderilme Tarihi 22 Mayıs 2020
Kabul Tarihi 14 Mayıs 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 38 Sayı: 2

Kaynak Göster

APA Sürer, E., Solmaz, H., Yılmaz, E., Calam, A., vd. (2022). Dizel-biyodizel karışımına karbon nanotüp katkısının motor performansı ve egzoz emisyonlarına etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 1055-1064. https://doi.org/10.17341/gazimmfd.741177
AMA Sürer E, Solmaz H, Yılmaz E, Calam A, İpci D. Dizel-biyodizel karışımına karbon nanotüp katkısının motor performansı ve egzoz emisyonlarına etkisinin incelenmesi. GUMMFD. Ekim 2022;38(2):1055-1064. doi:10.17341/gazimmfd.741177
Chicago Sürer, Elif, Hamit Solmaz, Emre Yılmaz, Alper Calam, ve Duygu İpci. “Dizel-Biyodizel karışımına Karbon nanotüp katkısının Motor Performansı Ve Egzoz emisyonlarına Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, sy. 2 (Ekim 2022): 1055-64. https://doi.org/10.17341/gazimmfd.741177.
EndNote Sürer E, Solmaz H, Yılmaz E, Calam A, İpci D (01 Ekim 2022) Dizel-biyodizel karışımına karbon nanotüp katkısının motor performansı ve egzoz emisyonlarına etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 2 1055–1064.
IEEE E. Sürer, H. Solmaz, E. Yılmaz, A. Calam, ve D. İpci, “Dizel-biyodizel karışımına karbon nanotüp katkısının motor performansı ve egzoz emisyonlarına etkisinin incelenmesi”, GUMMFD, c. 38, sy. 2, ss. 1055–1064, 2022, doi: 10.17341/gazimmfd.741177.
ISNAD Sürer, Elif vd. “Dizel-Biyodizel karışımına Karbon nanotüp katkısının Motor Performansı Ve Egzoz emisyonlarına Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/2 (Ekim 2022), 1055-1064. https://doi.org/10.17341/gazimmfd.741177.
JAMA Sürer E, Solmaz H, Yılmaz E, Calam A, İpci D. Dizel-biyodizel karışımına karbon nanotüp katkısının motor performansı ve egzoz emisyonlarına etkisinin incelenmesi. GUMMFD. 2022;38:1055–1064.
MLA Sürer, Elif vd. “Dizel-Biyodizel karışımına Karbon nanotüp katkısının Motor Performansı Ve Egzoz emisyonlarına Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 38, sy. 2, 2022, ss. 1055-64, doi:10.17341/gazimmfd.741177.
Vancouver Sürer E, Solmaz H, Yılmaz E, Calam A, İpci D. Dizel-biyodizel karışımına karbon nanotüp katkısının motor performansı ve egzoz emisyonlarına etkisinin incelenmesi. GUMMFD. 2022;38(2):1055-64.