PID based control of regenerative inverter for DC rail transit
Yıl 2023,
Cilt: 38 Sayı: 3, 1661 - 1674, 06.01.2023
Mahmut Çağrı Ceylan
,
Janset Dasdemir
,
Ufuk Dursun
İlker Üstoğlu
Öz
In this paper, a new control mechanism is proposed for grid-connected three-phase inverter that provides regenerative energy recuperation in direct current (DC) rail transit. In DC rail transit, line voltage can change dynamically depending on the regenerative energy generated by the trains during braking. In order to respond rapidly to dynamic changes in line voltage, a proportional-integral-derivative (PID) controller designed according to the dominant pole assignment method has been used in the control structure of the inverter. The derivative effect of the PID provides rapid response to changes in line voltage by increasing the speed of the system response. In addition, a new operating strategy that takes into account two different voltage values, unlike the systems that operate at constant voltage value in the literature, is proposed. The method provides more regenerative energy recovery by increasing the inverter operation range and thus contributes to energy efficiency. Finally, detailed model of a real system has been developed in Matlab/Simulink environment and the simulation studies comparing the performance of the PID-based control structure with the PI-based control has been presented to illustrate the feasibility of the proposed method.
Kaynakça
- 1. Iwnicki, S., Spiryagin, M., Cole, C., & McSweeney, T., Handbook of Railway Vehicle Dynamics, (2nd ed.), CRC Press, Boca Raton, 2019.
- 2. González-Gil, A., Palacin, R., & Batty, P., Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy. Energy Conversion and Management, 75, 374–388. 2013.
- 3. Khodaparastan, M., Mohamed, A. A., & Brandauer, W., Recuperation of Regenerative Braking Energy in Electric Rail Transit Systems, IEEE Transactions on Intelligent Transportation Systems, 20(8), 2831–2847, 2019.
- 4. Yang, X., Li, X., Gao, Z., Wang, H., & Tang, T., A Cooperative Scheduling Model for Timetable Optimization in Subway Systems, IEEE Transactions on Intelligent Transportation Systems, 14(1), 438–447, 2013.
- 5. Nasri, A., Moghadam, M. F., & Mokhtari, H., Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems, SPEEDAM 2010, 1218–1221, 2010.
- 6. Gelman, V., Energy Storage That May Be Too Good to Be True: Comparison Between Wayside Storage and Reversible Thyristor Controlled Rectifiers for Heavy Rail, IEEE Vehicular Technology Magazine, 8(4), 70–80, 2013.
- 7. Lin, S., Huang, D., Wang, A., Huang, Y., Zhao, L., Luo, R., & Lu, G., Research on the Regeneration Braking Energy Feedback System of Urban Rail Transit, IEEE Transactions on Vehicular Technology, 68(8), 7329–7339, 2019.
- 8. Blasko, V., & Kaura, V., A new mathematical model and control of a three-phase AC-DC voltage source converter, IEEE Transactions on Power Electronics, 12(1), 116–123, 1997.
- 9. Yao, Z., Xiao, L., & Guerrero, J. M., Improved control strategy for the three-phase grid-connected inverter, IET Renewable Power Generation, 9(6), 587–592, 2015.
- 10. Zhang, G., Tian, Z., Tricoli, P., Hillmansen, S., Wang, Y., & Liu, Z., Inverter Operating Characteristics Optimization for DC Traction Power Supply Systems, IEEE Transactions on Vehicular Technology, 68(4), 3400–3410, 2019.
- 11. Meral, M. E., Çelik, D., A novel current control strategy for grid connected renewable energy source inverters, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 537–550, 2020.
- 12. Zhang, G., Qian, J., & Zhang, X., Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System. Applied Sciences, 7(3), 282, 2017.
- 13. EN 50163:2004+A2:2020 European Standard. Railway applications - Supply voltages of traction systems, October 2020.
- 14. Hu, J., Zhao, Y., & Liu, X., The design of regeneration braking system in light rail vehicle using energy-storage Ultra-capacitor, 2008 IEEE Vehicle Power and Propulsion Conference, 1–5, 2008.
- 15. O’Rourke, C. J., Qasim, M. M., Overlin, M. R., & Kirtley, J. L., A Geometric Interpretation of Reference Frames and Transformations: Dq0, Clarke, and Park, IEEE Transactions on Energy Conversion, 34(4), 2070–2083, 2019.
- 16. Hsieh, G.-C., & Hung, J. C., Phase-locked loop techniques, A survey. IEEE Transactions on Industrial Electronics, 43(6), 609–615, 1996.
- 17. Pena, R., Clare, J., & Asher, G. M., A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine, Electric Power Applications, IEE Proceedings -, 143, 380–387, 1996.
- 18. Trinh, Q.-N., Choo, F. H., & Wang, P., Control Strategy to Eliminate Impact of Voltage Measurement Errors on Grid Current Performance of Three-Phase Grid-Connected Inverters, IEEE Transactions on Industrial Electronics, 64(9), 7508–7519, 2017.
19. Ceylan, M. Ç., Control of doubly fed induction generator based variable speed wind turbines, MSc,Yıldız Technical University, Institute of Science, Department of Control and Automation Engineering, 2014.
- 20. Üstoğlu, İ., & Söylemez, M. T., Feasibility conditions on PID controller synthesis using dominant pole assignment, 2007 European Control Conference (ECC), 483–489, 2007.
- 21. Rabie, D., Senjyu, T., Alkhalaf, S., Mohamed, Y. S., & Shehata, E. G., Study and analysis of voltage source converter control stability for HVDC system using different control techniques, Ain Shams Engineering Journal, 2021.
Doğru akım raylı ulaşım sistemleri için rejeneratif eviricinin PID tabanlı kontrolü
Yıl 2023,
Cilt: 38 Sayı: 3, 1661 - 1674, 06.01.2023
Mahmut Çağrı Ceylan
,
Janset Dasdemir
,
Ufuk Dursun
İlker Üstoğlu
Öz
Bu çalışmada, doğru akım (DA) raylı ulaşım sistemlerinde rejeneratif enerji kazanımını gerçekleştiren şebeke bağlantılı üç fazlı evirici birimine yönelik yeni bir kontrol mekanizması önerilmiştir. DA raylı ulaşım sistemlerinde trenlerin frenleme sırasında üretmiş olduğu rejeneratif enerjiye bağlı olarak hat gerilimi hızlı şekilde değişebilmektedir. Hat gerilimindeki bu değişimlere hızlı cevap vermek amacıyla evirici birimi kontrol yapısı içerisinde, baskın kutup atama yöntemine göre tasarlanan bir oransal-integral-türevsel (PID) kontrolör kullanılmıştır. PID içerisinde yer alan türevsel etki ile sistem tepkisi hızlandırılmış böylelikle hat gerilimindeki değişimlere hızlı cevap verilmesi sağlanmıştır. Ayrıca literatürdeki sabit gerilim değerinde çalışmasını gerçekleştiren sistemlerden farklı olarak iki farklı gerilim değerini dikkate alan yeni bir çalışma stratejisi önerilmiştir. Böylece, evirici çalışma bölgesi artırılarak daha fazla rejeneratif enerji kazanımı ile enerji verimliliğine katkı sağlanmıştır. Son olarak, Matlab/Simulink ortamında gerçek bir sistemin ayrıntılı modeli oluşturulmuş ve önerilen yöntemin uygulanabilirliğini göstermek amacıyla PID tabanlı kontrol yapısının performansını PI tabanlı kontrol ile karşılaştıran benzetim çalışmaları sunulmuştur.
Kaynakça
- 1. Iwnicki, S., Spiryagin, M., Cole, C., & McSweeney, T., Handbook of Railway Vehicle Dynamics, (2nd ed.), CRC Press, Boca Raton, 2019.
- 2. González-Gil, A., Palacin, R., & Batty, P., Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy. Energy Conversion and Management, 75, 374–388. 2013.
- 3. Khodaparastan, M., Mohamed, A. A., & Brandauer, W., Recuperation of Regenerative Braking Energy in Electric Rail Transit Systems, IEEE Transactions on Intelligent Transportation Systems, 20(8), 2831–2847, 2019.
- 4. Yang, X., Li, X., Gao, Z., Wang, H., & Tang, T., A Cooperative Scheduling Model for Timetable Optimization in Subway Systems, IEEE Transactions on Intelligent Transportation Systems, 14(1), 438–447, 2013.
- 5. Nasri, A., Moghadam, M. F., & Mokhtari, H., Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems, SPEEDAM 2010, 1218–1221, 2010.
- 6. Gelman, V., Energy Storage That May Be Too Good to Be True: Comparison Between Wayside Storage and Reversible Thyristor Controlled Rectifiers for Heavy Rail, IEEE Vehicular Technology Magazine, 8(4), 70–80, 2013.
- 7. Lin, S., Huang, D., Wang, A., Huang, Y., Zhao, L., Luo, R., & Lu, G., Research on the Regeneration Braking Energy Feedback System of Urban Rail Transit, IEEE Transactions on Vehicular Technology, 68(8), 7329–7339, 2019.
- 8. Blasko, V., & Kaura, V., A new mathematical model and control of a three-phase AC-DC voltage source converter, IEEE Transactions on Power Electronics, 12(1), 116–123, 1997.
- 9. Yao, Z., Xiao, L., & Guerrero, J. M., Improved control strategy for the three-phase grid-connected inverter, IET Renewable Power Generation, 9(6), 587–592, 2015.
- 10. Zhang, G., Tian, Z., Tricoli, P., Hillmansen, S., Wang, Y., & Liu, Z., Inverter Operating Characteristics Optimization for DC Traction Power Supply Systems, IEEE Transactions on Vehicular Technology, 68(4), 3400–3410, 2019.
- 11. Meral, M. E., Çelik, D., A novel current control strategy for grid connected renewable energy source inverters, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 537–550, 2020.
- 12. Zhang, G., Qian, J., & Zhang, X., Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System. Applied Sciences, 7(3), 282, 2017.
- 13. EN 50163:2004+A2:2020 European Standard. Railway applications - Supply voltages of traction systems, October 2020.
- 14. Hu, J., Zhao, Y., & Liu, X., The design of regeneration braking system in light rail vehicle using energy-storage Ultra-capacitor, 2008 IEEE Vehicle Power and Propulsion Conference, 1–5, 2008.
- 15. O’Rourke, C. J., Qasim, M. M., Overlin, M. R., & Kirtley, J. L., A Geometric Interpretation of Reference Frames and Transformations: Dq0, Clarke, and Park, IEEE Transactions on Energy Conversion, 34(4), 2070–2083, 2019.
- 16. Hsieh, G.-C., & Hung, J. C., Phase-locked loop techniques, A survey. IEEE Transactions on Industrial Electronics, 43(6), 609–615, 1996.
- 17. Pena, R., Clare, J., & Asher, G. M., A doubly fed induction generator using back-to-back PWM converters supplying an isolated load from a variable speed wind turbine, Electric Power Applications, IEE Proceedings -, 143, 380–387, 1996.
- 18. Trinh, Q.-N., Choo, F. H., & Wang, P., Control Strategy to Eliminate Impact of Voltage Measurement Errors on Grid Current Performance of Three-Phase Grid-Connected Inverters, IEEE Transactions on Industrial Electronics, 64(9), 7508–7519, 2017.
19. Ceylan, M. Ç., Control of doubly fed induction generator based variable speed wind turbines, MSc,Yıldız Technical University, Institute of Science, Department of Control and Automation Engineering, 2014.
- 20. Üstoğlu, İ., & Söylemez, M. T., Feasibility conditions on PID controller synthesis using dominant pole assignment, 2007 European Control Conference (ECC), 483–489, 2007.
- 21. Rabie, D., Senjyu, T., Alkhalaf, S., Mohamed, Y. S., & Shehata, E. G., Study and analysis of voltage source converter control stability for HVDC system using different control techniques, Ain Shams Engineering Journal, 2021.